Matching Items (2)
Filtering by

Clear all filters

157261-Thumbnail Image.png
Description
Diophantine arithmetic is one of the oldest branches of mathematics, the search

for integer or rational solutions of algebraic equations. Pythagorean triangles are

an early instance. Diophantus of Alexandria wrote the first related treatise in the

fourth century; it was an area extensively studied by the great mathematicians of the seventeenth

Diophantine arithmetic is one of the oldest branches of mathematics, the search

for integer or rational solutions of algebraic equations. Pythagorean triangles are

an early instance. Diophantus of Alexandria wrote the first related treatise in the

fourth century; it was an area extensively studied by the great mathematicians of the seventeenth century, including Euler and Fermat.

The modern approach is to treat the equations as defining geometric objects, curves, surfaces, etc. The theory of elliptic curves (or curves of genus 1, which are much used in modern cryptography) was developed extensively in the twentieth century, and has had great application to Diophantine equations. This theory is used in application to the problems studied in this thesis. This thesis studies some curves of high genus, and possible solutions in both rationals and in algebraic number fields, generalizes some old results and gives answers to some open problems in the literature. The methods involve known techniques together with some ingenious tricks. For example, the equations $y^2=x^6+k$, $k=-39,\,-47$, the two previously unsolved cases for $|k|<50$, are solved using algebraic number theory and the ‘elliptic Chabauty’ method. The thesis also studies the genus three quartic curves $F(x^2,y^2,z^2)=0$ where F is a homogeneous quadratic form, and extend old results of Cassels, and Bremner. It is a very delicate matter to find such curves that have no rational points, yet which do have points in odd-degree extension fields of the rationals.

The principal results of the thesis are related to surfaces where the theory is much less well known. In particular, the thesis studies some specific families of surfaces, and give a negative answer to a question in the literature regarding representation of integers n in the form $n=(x+y+z+w)(1/x+1/y+1/z+1/w).$ Further, an example, the first such known, of a quartic surface $x^4+7y^4=14z^4+18w^4$ is given with remarkable properties: it is everywhere locally solvable, yet has no non-zero rational point, despite having a point in (non-trivial) odd-degree extension fields of the rationals. The ideas here involve manipulation of the Hilbert symbol, together with the theory of elliptic curves.
ContributorsNguyen, Xuan Tho (Author) / Bremner, Andrew (Thesis advisor) / Childress, Nancy (Committee member) / Jones, John (Committee member) / Quigg, John (Committee member) / Fishel, Susanna (Committee member) / Arizona State University (Publisher)
Created2019
131401-Thumbnail Image.png
Description
This thesis project is focused on studying the number field sieve. The number field sieve is a factoring algorithm which uses algebraic number theory and is one of the fastest known factoring algorithms today. Factoring large integers into prime factors is an extremely difficult problem, yet also extremely important in

This thesis project is focused on studying the number field sieve. The number field sieve is a factoring algorithm which uses algebraic number theory and is one of the fastest known factoring algorithms today. Factoring large integers into prime factors is an extremely difficult problem, yet also extremely important in cryptography. The security of the cryptosystem RSA is entirely based on the difficulty of factoring certain large integers into a product of two distinct large primes. While the number field sieve is one of the fastest factoring algorithms known, it is still not efficient enough to factor cryptographic sized integers.

In this thesis we will examine the algorithm of the number field sieve and discuss some important advancements. In particular, we will focus on the advancements that have been done in the polynomial selection step, the first main step of the number field sieve. The polynomial selected determines the number field by which computations are carried out in the remainder of the algorithm. Selection of a good polynomial allows for better time efficiency and a higher probability that the algorithm will be successful in factoring.
ContributorsLopez, Rose Eleanor (Co-author) / Lopez, Rose (Co-author) / Childress, Nancy (Thesis director) / Jones, John (Committee member) / Pomerance, Carl (Committee member) / School of Music (Contributor) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05