Matching Items (1)
162007-Thumbnail Image.png
Description
Osteocalcin (Oc) is the most abundant non-collagen protein found in the bone, but its precise function is still not completely understood. Three glutamic acid (Glu) residues within its sequence are sites for vitamin K-dependent post-translational modification, replacing a hydrogen with a carboxylate located at the γ-carbon position, converting these to

Osteocalcin (Oc) is the most abundant non-collagen protein found in the bone, but its precise function is still not completely understood. Three glutamic acid (Glu) residues within its sequence are sites for vitamin K-dependent post-translational modification, replacing a hydrogen with a carboxylate located at the γ-carbon position, converting these to γ-carboxyglutamic acid (Gla) residues. This modification confers increased binding of Oc to Ca2+ and hydroxyapatite matrix. Presented here, novel metal binding partners Mn2+, Fe3+, and Cr3+ of human Oc were determined, while the previously identified binders to (generally) non-human Oc, Ca2+, Mg2+, Pb2+ and Al3+ were validated as binders to human Oc by direct infusion mass spectrometry with all metals binding with higher affinity to the post-translationally modified form (Gla-Oc) compared to the unmodified form (Glu-Oc). Oc was also found to form pentamer (Gla-Oc) and pentamer and tetramer (Glu-Oc) homomeric self-assemblies in the absence of NaCl, which disassembled to monomers in the presence of near physiological Na+ concentrations. Additionally, Oc was found to form filamentous structures in vitro by negative stain TEM in the presence of increased Ca2+ titrations in a Gla- and pH-dependent manner. Finally, by combining circular dichroism spectroscopy to determine the fraction of Gla-Oc bound, and inductively-coupled plasma mass spectrometry to quantify total Al concentrations, the data were fit to a single-site binding model and the equilibrium dissociation constant for Al3+ binding to human Gla-Oc was determined (Kd = 1.0 ± 0.12 nM). Including citrate, a known competitive binder of Al3+, maintained Al in solution and enabled calculation of free Al3+ concentrations using a Matlab script to solve the complex set of linear equations. To further improve Al solubility limits, the pH of the system was lowered to 4.5, the pH during bone resorption. Complementary binding experiments with Glu-Oc were not possible due to the observed precipitation of Glu-Oc at pH 4.5, although qualitatively if Glu-Oc binds Al3+, it is with much lower affinity compared to Gla-Oc. Taken together, the results presented here further support the importance of post-translational modification, and thus adequate nutritional intake of vitamin K, on the binding and self-assembly properties of human Oc.
ContributorsThibert, Stephanie (Author) / Borges, Chad R (Thesis advisor) / LaBaer, Joshua (Committee member) / Chiu, Po-Lin (Committee member) / Arizona State University (Publisher)
Created2021