Matching Items (3)
Filtering by

Clear all filters

173274-Thumbnail Image.png
Description

Oliver Allison Ryder studied chromosomal evolution and endangered species in efforts for wildlife conservation and preservation at the San Diego Zoo in San Diego, California. Throughout his career, Ryder studied breeding patterns of endangered species. He collected and preserved cells, tissues, and DNA from endangered and extinct species to store

Oliver Allison Ryder studied chromosomal evolution and endangered species in efforts for wildlife conservation and preservation at the San Diego Zoo in San Diego, California. Throughout his career, Ryder studied breeding patterns of endangered species. He collected and preserved cells, tissues, and DNA from endangered and extinct species to store in the San Diego Frozen Zoo, a center for genetic research and development in San Diego, California. Ryder and his team also sequenced vertebrate genomes under the Genome 10k initiative, a collaborative international program aiming to analyze the complete genomes of over ten thousand species of vertebrate. Ryder’s research has helped preserve species, restore diminished populations of wildlife, and protect biodiversity.

Created2017-09-14
173278-Thumbnail Image.png
Description

Max Ludwig Henning Delbrick applied his knowledge of theoretical physics to biological systems such as bacterial viruses called bacteriophages, or phages, and gene replication during the twentieth century in Germany and the US. Delbrück demonstrated that bacteria undergo random genetic mutations to resist phage infections. Those findings linked bacterial genetics

Max Ludwig Henning Delbrick applied his knowledge of theoretical physics to biological systems such as bacterial viruses called bacteriophages, or phages, and gene replication during the twentieth century in Germany and the US. Delbrück demonstrated that bacteria undergo random genetic mutations to resist phage infections. Those findings linked bacterial genetics to the genetics of higher organisms. In the mid-twentieth century, Delbrück helped start the Phage Group and Phage Course in the US, which further organized phage research. Delbrück also contributed to the DNA replication debate that culminated in the 1958 Meselson-Stahl experiment, which demonstrated how organisms replicate their genetic information. For his work with phages, Delbrück earned part of the 1969 Nobel Prize for Physiology or Medicine. Delbrück's work helped shape and establish new fields in molecular biology and genetics to investigate the laws of inheritance and development.

Created2017-09-20
131379-Thumbnail Image.png
Description
Each year, more and more multi-drug resistant bacterial strains emerge, thus complicating treatment and increasing the average stay in the intensive care unit. As antibiotics are being rendered inefficient, there is a need to look into ways of weakening the internal state of bacterial cells to make them more susceptible

Each year, more and more multi-drug resistant bacterial strains emerge, thus complicating treatment and increasing the average stay in the intensive care unit. As antibiotics are being rendered inefficient, there is a need to look into ways of weakening the internal state of bacterial cells to make them more susceptible to antibiotics. For this, we first need to understand what methods bacteria employ to fight against antibiotics. In this work, we have reviewed how bacteria respond to antibiotics. There is a similarity in response to antibiotic exposure and starvation (stringent stress) which changes the metabolic state. We have delineated what metabolism changes take place and how they are associated with oxidative stress. For example, there is a common change in NADH concentration that is tied to both metabolism and oxidative stress. Finally, we have compared the findings in literature with our research on an antibiotic-resistant RNA polymerase mutant that alters the gene expression profile in the general areas of metabolism and oxidative stress. Based on this thesis, we have suggested a couple of strategies to make antibiotics more efficient; however, as antibiotic-mediated killing is very complex, researchers need to delve deeper to understand and manipulate the full cellular response.
ContributorsPredtechenskaya, Maria (Author) / Misra, Rajeev (Thesis director) / Varman, Arul Mozhy (Committee member) / Mhatre, Apurv (Committee member) / Computer Science and Engineering Program (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05