Matching Items (2)
Filtering by

Clear all filters

152850-Thumbnail Image.png
Description
This dissertation presents research findings on the three materials systems: lateral Si nanowires (SiNW), In2Se3/Bi2Se3 heterostructures and graphene. The first part of the thesis was focused on the growth and characterization of lateral SiNW. Lateral here refers to wires growing along the plane of substrate; vertical NW on the other

This dissertation presents research findings on the three materials systems: lateral Si nanowires (SiNW), In2Se3/Bi2Se3 heterostructures and graphene. The first part of the thesis was focused on the growth and characterization of lateral SiNW. Lateral here refers to wires growing along the plane of substrate; vertical NW on the other hand grow out of the plane of substrate. It was found, using the Au-seeded vapor – liquid – solid technique, that epitaxial single-crystal SiNW can be grown laterally along Si(111) substrates that have been miscut toward [11− 2]. The ratio of lateral-to-vertical NW was found to increase as the miscut angle increased and as disilane pressure and substrate temperature decreased. Based on this observation, growth parameters were identified whereby all of the deposited Au seeds formed lateral NW. Furthermore, the nanofaceted substrate guided the growth via a mechanism that involved pinning of the trijunction at the liquid/solid interface of the growing nanowire.

Next, the growth of selenide heterostructures was explored. Specifically, molecular beam epitaxy was utilized to grow In2Se3 and Bi2Se3 films on h-BN, highly oriented pyrolytic graphite and Si(111) substrates. Growth optimizations of In2Se3 and Bi2Se3 films were carried out by systematically varying the growth parameters. While the growth of these films was demonstrated on h-BN and HOPG surface, the majority of the effort was focused on growth on Si(111). Atomically flat terraces that extended laterally for several hundred nm, which were separated by single quintuple layer high steps characterized surface of the best In2Se3 films grown on Si(111). These In2Se3 films were suitable for subsequent high quality epitaxy of Bi2Se3 .

The last part of this dissertation was focused on a recently initiated and ongoing study of graphene growth on liquid metal surfaces. The initial part of the study comprised a successful modification of an existing growth system to accommodate graphene synthesis and process development for reproducible graphene growth. Graphene was grown on Cu, Au and AuCu alloys at varioua conditions. Preliminary results showed triangular features on the liquid part of the Cu metal surface. For Au, and AuCu alloys, hexagonal features were noticed both on the solid and liquid parts.
ContributorsRathi, Somilkumar J (Author) / Drucker, Jeffery (Thesis advisor) / Smith, David (Committee member) / Chen, Tingyong (Committee member) / Arizona State University (Publisher)
Created2014
134057-Thumbnail Image.png
Description
The purpose of this research was to produce reduced graphene oxides for the fabrication of desalination membranes. Graphene has typically been considered a way to create more energy efficient desalination membranes. However, graphene is expensive and unstable, while graphene oxide has similar properties, but is less expensive and

The purpose of this research was to produce reduced graphene oxides for the fabrication of desalination membranes. Graphene has typically been considered a way to create more energy efficient desalination membranes. However, graphene is expensive and unstable, while graphene oxide has similar properties, but is less expensive and more stable. Graphene oxide membranes have the potential to perform above the permeability-selectivity tradeoff that is typical in membranes through size-based exclusion. Reduction through heat or Vitamin C reduces the size of graphene oxide nanochannels so salt and organic materials can be rejected in higher numbers. Both reduced and unreduced graphene oxide membranes were created and evaluated by their ability to filter dye and salt in a pressurized membrane cell. The permeability and rejection of the graphene oxide membrane is found to be dependent on the oxidation level of the graphene oxide material and the concentration on the graphene oxide on the membrane. Unreduced graphene oxide membranes were created in three concentrations: 7.37, 14.74, and 29.47 μg/cm2. As graphene oxide concentration increased, dye rejection and salt rejection increased, while water flux decreased. Graphene oxide was reduced in solution using Vitamin C and was used to create a 14.74 μg/cm2 membrane. The reduction resulted in an increase in salt rejection from 12.59% to 100%, an increase in dye rejection from 30.44% to 100%, and a decrease in water flux from 9.502 to 0.198 L/(hr*m2*bar). Future research should focus on creating membranes using different methods of synthesizing graphene oxide from graphene and creating a reduced graphene oxide membrane with a higher water flux.
Created2017-12