Matching Items (18)
Filtering by

Clear all filters

157430-Thumbnail Image.png
Description
Basilisk lizards are often studied for their unique ability to run across the surface of

water. Due to the complicated fluid dynamics of this process, the forces applied on the

water’s surface cannot be measured using traditional methods. This thesis presents a

novel technique of measuring the forces using a fluid dynamic force

Basilisk lizards are often studied for their unique ability to run across the surface of

water. Due to the complicated fluid dynamics of this process, the forces applied on the

water’s surface cannot be measured using traditional methods. This thesis presents a

novel technique of measuring the forces using a fluid dynamic force platform (FDFP),

a light, rigid box immersed in water. This platform, along with a motion capture

system, can be used to characterize the kinematics and dynamics of a basilisk lizard

running on water. This could ultimately lead to robots that can run on water in a

similar manner.
ContributorsSweeney, Andrew Joseph (Author) / Marvi, Hamidreza (Thesis advisor) / Lentink, David (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2019
156718-Thumbnail Image.png
Description
Lower-limb wearable assistive robots could alter the users gait kinematics by inputting external power, which can be interpreted as mechanical perturbation to subject normal gait. The change in kinematics may affect the dynamic stability. This work attempts to understand the effects of different physical assistance from these robots on the

Lower-limb wearable assistive robots could alter the users gait kinematics by inputting external power, which can be interpreted as mechanical perturbation to subject normal gait. The change in kinematics may affect the dynamic stability. This work attempts to understand the effects of different physical assistance from these robots on the gait dynamic stability.

A knee exoskeleton and ankle assistive device (Robotic Shoe) are developed and used to provide walking assistance. The knee exoskeleton provides personalized knee joint assistive torque during the stance phase. The robotic shoe is a light-weighted mechanism that can store the potential energy at heel strike and release it by using an active locking mechanism at the terminal stance phase to provide push-up ankle torque and assist the toe-off. Lower-limb Kinematic time series data are collected for subjects wearing these devices in the passive and active mode. The changes of kinematics with and without these devices on lower-limb motion are first studied. Orbital stability, as one of the commonly used measure to quantify gait stability through calculating Floquet Multipliers (FM), is employed to asses the effects of these wearable devices on gait stability. It is shown that wearing the passive knee exoskeleton causes less orbitally stable gait for users, while the knee joint active assistance improves the orbital stability compared to passive mode. The robotic shoe only affects the targeted joint (right ankle) kinematics, and wearing the passive mechanism significantly increases the ankle joint FM values, which indicates less walking orbital stability. More analysis is done on a mechanically perturbed walking public data set, to show that orbital stability can quantify the effects of external mechanical perturbation on gait dynamic stability. This method can further be used as a control design tool to ensure gait stability for users of lower-limb assistive devices.
ContributorsRezayat Sorkhabadi, Seyed Mostafa (Author) / Zhang, Wenlong (Thesis advisor) / Lee, Hyunglae (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2018
132475-Thumbnail Image.png
Description
The global population over the age of 60 is estimated to rise to 23% by 2050 only increase the prevalence of functional neurological disorders and stroke. Increase in cases of functional neurological disorders and strokes will place a greater burden on the healthcare industry, specifically physical therapy. Physical therapy is

The global population over the age of 60 is estimated to rise to 23% by 2050 only increase the prevalence of functional neurological disorders and stroke. Increase in cases of functional neurological disorders and strokes will place a greater burden on the healthcare industry, specifically physical therapy. Physical therapy is vital for a patient’s recovery of motor function which is time demanding and taxing on the physical therapist. Wearable robotics have been proven to improve functional outcomes in gait rehabilitation by providing controlled high dosage and high-intensity training. Accurate control strategies for assistive robotic exoskeletons are vital for repetitive high precisions assistance for cerebral plasticity to occur.

This thesis presents a preliminary determination and design of a control algorithm for an assistive ankle device developed by the ASU RISE Laboratory. The assistive ankle device functions by compressing a spring upon heel strike during gait, remaining compressed during mid-stance and then releasing upon initiation of heel-off. The relationship between surface electromyography and ground reactions forces were used for identification of user-initiated heel-off. The muscle activation of the tibialis anterior combined with the ground reaction forces of the heel pressure sensor generated potential features that will be utilized in the revised control algorithm for the assistive ankle device. Work on this project must proceed in order to test and validate the revised control algorithm to determine its accuracy and precision.
ContributorsGaytan-Jenkins, Daniel Rinaldo (Author) / Zhang, Wenlong (Thesis director) / Tyler, Jamie (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134675-Thumbnail Image.png
Description
Concept mapping is a tool used in order to visually represent a person's understanding of interrelated concepts. Generally the central concept is in the center or at the top and the related concepts branch off, becoming more detailed as it continues. Additionally, links between different branches show how those concepts

Concept mapping is a tool used in order to visually represent a person's understanding of interrelated concepts. Generally the central concept is in the center or at the top and the related concepts branch off, becoming more detailed as it continues. Additionally, links between different branches show how those concepts are related to each other. Concept mapping can be implemented in many different types of classrooms because it can be easily adjusted for the needs of the teacher and class specifically. The goal of this project is to analyze both the attitude and achievement of students using concept mapping of college students in an active learning classroom. In order to evaluate the students' concept maps we will use the expert map scoring method, which compares the students concept maps to an expertly created concept map for similarities; the more similar the two maps are, the higher the score. We will collect and record students' scores on concept maps as they continue through the one semester class. Certain chapters correspond to specific exams due to the information contained in the lectures, chapters 1-4 correspond to exam 1 and so forth. We will use this information to correlate the average concept map score across these chapters to one exam score. There was no significant correlation found between the exam grades and the corresponding scores on the concept maps (Pearson's R values of 0.27, 0.26, and -0.082 for Exam 1, 2 and 3 respectively). According to Holm et all "it was found that 85% of students found interest or attainment in the concept mapping session, only 44% thought there was a cost, and 63% thought it would help them to be successful."
ContributorsFarrell, Carilee Dawn (Author) / Ankeny, Casey (Thesis director) / Middleton, James (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135593-Thumbnail Image.png
Description
The effect of conflicting sensorimotor memories on optimal force strategies was explored. Subjects operated a virtual object controlled by a physical handle to complete a simple straight-line task. Perturbations applied to the handle induced a period of increased error in subject accuracy. After two blocks of 33 trials, perturbations switched

The effect of conflicting sensorimotor memories on optimal force strategies was explored. Subjects operated a virtual object controlled by a physical handle to complete a simple straight-line task. Perturbations applied to the handle induced a period of increased error in subject accuracy. After two blocks of 33 trials, perturbations switched direction, inducing increased error from the previous trials. Subjects returned after a 24-hour period to complete a similar protocol, but beginning with the second context and ending with the first. Interference from the first context on each day caused an increase in initial error for the second (P < 0.05). Following the rest period, subjects showed retention of the sensorimotor memory from the previous day through significantly decreased initial error (P = 3x10-6). However, subjects showed an increase in forces for each new context resulting from a sub-optimal motor strategy. Higher levels of total effort (P < 0.05) and a lack of separation between force values for opposing and non-opposing digits (P > 0.05) indicated a strategy that used more energy to complete the task, even when rates of learning appeared identical or improved. Two possible mechanisms for this lack of energy conservation have been proposed.
ContributorsSmith, Michael David (Author) / Santello, Marco (Thesis director) / Kleim, Jeffrey (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148198-Thumbnail Image.png
Description

Oscillatory perturbations with varying amplitudes and frequencies have been found to significantly affect human standing balance. However, previous studies have only applied perturbation in either the anterior-posterior (AP) or the medio-lateral (ML) directions. Little is currently known about the impacts of 2D oscillatory perturbations on postural stability, which are

Oscillatory perturbations with varying amplitudes and frequencies have been found to significantly affect human standing balance. However, previous studies have only applied perturbation in either the anterior-posterior (AP) or the medio-lateral (ML) directions. Little is currently known about the impacts of 2D oscillatory perturbations on postural stability, which are more commonly seen in daily life (i.e., while traveling on trains, ships, etc.). This study investigated the effects of applying 2D perturbations vs 1D perturbations on standing stability, and how increasing the frequency and amplitude of perturbation impacts postural stability. A dual-axis robotic platform was utilized to simulate various oscillatory perturbations and evaluate standing postural stability. Fifteen young healthy subjects were recruited to perform quiet stance on the platform. Impacts of perturbation direction (i.e., 1D versus 2D), amplitude, and frequency on postural stability were investigated by analyzing different stability measures, specifically AP/ML/2D Center-of-Pressure (COP) path length, AP/ML/2D Time-to-Boundary (TtB), and sway area. Standing postural stability was compromised more by 2D perturbations than 1D perturbations, evidenced by a significant increase in COP path length and sway area and decrease in TtB. Further, the stability decreased as 2D perturbation amplitude and frequency increased. A significant increase in COP path length and decrease in TtB were consistently observed as the 2D perturbation amplitude and frequency increased. However, sway area showed a considerable increase only with increasing perturbation amplitude but not with increasing frequency.

ContributorsBerrett, Lauren Ann (Author) / Lee, Hyunglae (Thesis director) / Peterson, Daniel (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
137074-Thumbnail Image.png
Description
Medial compartment knee osteoarthritis (OA) is a disease whose severity has been associated with the peak adduction moment during walking (pKAM). Unfortunately, measuring patients' pKAM to track their therapy progress involves the use of a gait laboratory which is expensive and time intensive. This study aimed to develop and assess

Medial compartment knee osteoarthritis (OA) is a disease whose severity has been associated with the peak adduction moment during walking (pKAM). Unfortunately, measuring patients' pKAM to track their therapy progress involves the use of a gait laboratory which is expensive and time intensive. This study aimed to develop and assess a regression method to predict the pKAM using only plantar pressure measurements. This approach could greatly reduce the burden of evaluating pKAM.
ContributorsThomas, Kevin Andrew (Author) / Hinrichs, Richard (Thesis director) / Harper, Erin (Committee member) / Favre, Julien (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
168324-Thumbnail Image.png
Description
This thesis work presents two separate studies:The first study assesses standing balance under various 2-dimensional (2D) compliant environments simulated using a dual-axis robotic platform and vision conditions. Directional virtual time-to-contact (VTC) measures were introduced to better characterize postural balance from both temporal and spatial aspects, and enable prediction of fall-relevant

This thesis work presents two separate studies:The first study assesses standing balance under various 2-dimensional (2D) compliant environments simulated using a dual-axis robotic platform and vision conditions. Directional virtual time-to-contact (VTC) measures were introduced to better characterize postural balance from both temporal and spatial aspects, and enable prediction of fall-relevant directions. Twenty healthy young adults were recruited to perform quiet standing tasks on the platform. Conventional stability measures, namely center-of-pressure (COP) path length and COP area, were also adopted for further comparisons with the proposed VTC. The results indicated that postural balance was adversely impacted, evidenced by significant decreases in VTC and increases in COP path length/area measures, as the ground compliance increased and/or in the absence of vision (ps < 0.001). Interaction effects between environment and vision were observed in VTC and COP path length measures (ps ≤ 0.05), but not COP area (p = 0.103). The estimated likelihood of falls in anterior-posterior (AP) and medio-lateral (ML) directions converged to nearly 50% (almost independent of the foot setting) as the experimental condition became significantly challenging. The second study introduces a deep learning approach using convolutional neural network (CNN) for predicting environments based on instant observations of sway during balance tasks. COP data were collected from fourteen subjects while standing on the 2D compliant environments. Different window sizes for data segmentation were examined to identify its minimal length for reliable prediction. Commonly-used machine learning models were also tested to compare their effectiveness with that of the presented CNN model. The CNN achieved above 94.5% in the overall prediction accuracy even with 2.5-second length data, which cannot be achieved by traditional machine learning models (ps < 0.05). Increasing data length beyond 2.5 seconds slightly improved the accuracy of CNN but substantially increased training time (60% longer). Importantly, averaged normalized confusion matrices revealed that CNN is much more capable of differentiating the mid-level environmental condition. These two studies provide new perspectives in human postural balance, which cannot be interpreted by conventional stability analyses. Outcomes of these studies contribute to the advancement of human interactive robots/devices for fall prevention and rehabilitation.
ContributorsPhan, Vu Nguyen (Author) / Lee, Hyunglae (Thesis advisor) / Peterson, Daniel (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2021
189237-Thumbnail Image.png
Description
Low back pain (LBP) is the most common symptom leading to hospitalization and medical assistance. In the US, LBP is the fifth most prevalent case for visiting hospitals. Approximately 2.06 million LBP incidents were reported during the timeline between 2004 and 2008. Globally, LBP occurrence increased by almost 200 million

Low back pain (LBP) is the most common symptom leading to hospitalization and medical assistance. In the US, LBP is the fifth most prevalent case for visiting hospitals. Approximately 2.06 million LBP incidents were reported during the timeline between 2004 and 2008. Globally, LBP occurrence increased by almost 200 million from 1990 to 2017. This problem is further implicated by physical and financial constraints that impact the individual’s quality of life. The medical cost exceeded $87.6 billion, and the lifetime prevalence was 84%. This indicates that the majority of people in the US will experience this symptom. Also, LBP limits Activities of Daily Living (ADL) and possibly affects the gait and postural stability. Prior studies indicated that LBP patients have slower gait speed and postural instability. To alleviate this symptom, the epidural injection is prescribed to treat pain and improve mobility function. To evaluate the effectiveness of LBP epidural injection intervention, gait and posture stability was investigated before and after the injection. While these factors are the fundamental indicator of LBP improvement, ADL is an element that needs to be significantly considered. The physical activity level depicts a person’s dynamic movement during the day, it is essential to gather activity level that supports monitoring chronic conditions, such as LBP, osteoporosis, and falls. The objective of this study was to assess the effects of Epidural Steroid Injection (ESI) on LBP and related gait and postural stability in the pre and post-intervention status. As such, the second objective was to assess the influence of ESI on LBP, and how it influences the participant’s ADL physical activity level. The results indicated that post-ESI intervention has significantly improved LBP patient’s gait and posture stability, however, there was insufficient evidence to determine the significant disparity in the physical activity levels. In conclusion, ESI depicts significant positive effects on LBP patients’ gait and postural parameters, however, more verification is required to indicate a significant effect on ADL physical activity levels.
ContributorsMoon, Seong Hyun (Author) / Lockhart, Thurmon (Thesis advisor) / Honeycutt, Claire (Committee member) / Peterson, Daniel (Committee member) / Lee, Hyunglae (Committee member) / Soangra, Rahul (Committee member) / Arizona State University (Publisher)
Created2023
187371-Thumbnail Image.png
Description
Chronic ankle instability (CAI) is caused by the failure to seek treatment and rehabilitation after an acute ankle sprain. Typically, clinical assessment of ankle sprains is done under unloaded conditions, despite the fact that ankle sprains occur during weight loading. Characterization of ankle stiffness, a representation of ankle stability during

Chronic ankle instability (CAI) is caused by the failure to seek treatment and rehabilitation after an acute ankle sprain. Typically, clinical assessment of ankle sprains is done under unloaded conditions, despite the fact that ankle sprains occur during weight loading. Characterization of ankle stiffness, a representation of ankle stability during weight loading, is crucial to quantify ankle stability. Patients with CAI suffer from gait asymmetry, and the descriptions of the asymmetry ratio vary widely throughout the research community. Bilateral ankle stiffness could be a systematic metric to describe the gait asymmetry of CAI patients. Additionally, women generally have higher ankle joint and ligamentous laxity than men, and lower ankle stiffness, which has been thoroughly investigated in previous literature. However, differences in bilateral ankle stiffness between sexes still need to be investigated. Using twin dual-axis robotic platforms, this study investigated the weight loading effect on ankle stiffness in the frontal plane during standing, the bilateral difference in stiffness between the dominant and non-dominant ankle, and the sex difference in bilateral ankle stiffness during standing for varying weight distribution. The group average results of 20 healthy subjects showed that ankle stiffness increased with increasing weight loading on the ankle, which is speculated to be caused by active muscle contraction and changes in passive structure due to weight loading. For the bilateral difference of the group, the statistical analysis showed that there was no significant difference between dominant and non-dominant ankle stiffness for all the weight distributions considered. Although the group average result of the difference in bilateral ankle stiffness was statistically insignificant, individual analysis confirmed the importance of subject-specific investigation of bilateral ankle stiffness, as there were more cases of dominant ankle stiffness being larger than non-dominant ankle stiffness, and the bilateral difference was subject-specific. Investigations into sex differences in bilateral ankle stiffness showed that ankle stiffness in males is significantly greater than in females, even after normalizing the stiffness by weight, which is speculated to be caused by higher joint and ligamentous laxity in females regardless of laterality.
ContributorsPaing, Soe Lin (Author) / Lee, Hyunglae (Thesis advisor) / Berman, Spring (Committee member) / Peterson, Daniel (Committee member) / Arizona State University (Publisher)
Created2023