Matching Items (5)
Filtering by

Clear all filters

133613-Thumbnail Image.png
Description
In this article we present a low-cost force-sensing quadrupedal laminate robot platform. The robot has two degrees of freedom on each of four independent legs, allowing for a variety of motion trajectories to be created at each leg, thus creating a rich control space to explore on a relatively low-cost

In this article we present a low-cost force-sensing quadrupedal laminate robot platform. The robot has two degrees of freedom on each of four independent legs, allowing for a variety of motion trajectories to be created at each leg, thus creating a rich control space to explore on a relatively low-cost robot. This platform allows a user to research complex motion and gait analysis control questions, and use different concepts in computer science and control theory methods to permit it to walk. The motion trajectory of each leg has been modeled in Python. Critical design considerations are: the complexity of the laminate design, the rigidity of the materials of which the laminate is constructed, the accuracy of the transmission to control each leg, and the design of the force sensing legs.
ContributorsShuch, Benjamin David (Author) / Aukes, Daniel (Thesis director) / Sodemann, Angela (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134678-Thumbnail Image.png
Description
Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm

Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm to aid workers performing box lifting types of tasks. Existing products aimed at improving worker comfort and productivity typically employ either fully powered exoskeleton suits or utilize minimally powered spring arms and/or fixtures. These designs either reduce stress to the user's body through powered arms and grippers operated via handheld controls which have limited functionality, or they use a more minimal setup that reduces some load, but exposes the user's hands and wrists to injury by directing support to the forearm. The design proposed here seeks to strike a balance between size, weight, and power requirements and also proposes a novel wrist exoskeleton design which minimizes stress on the user's wrists by directly interfacing with the object to be picked up. The design of the wrist exoskeleton was approached through initially selecting degrees of freedom and a ROM (range of motion) to accommodate. Feel and functionality were improved through an iterative prototyping process which yielded two primary designs. A novel "clip-in" method was proposed to allow the user to easily attach and detach from the exoskeleton. Designs utilized a contact surface intended to be used with dry fibrillary adhesives to maximize exoskeleton grip. Two final designs, which used two pivots in opposite kinematic order, were constructed and tested to determine the best kinematic layout. The best design had two prototypes created to be worn with passive test arms that attached to the user though a specially designed belt.
ContributorsGreason, Kenneth Berend (Author) / Sugar, Thomas (Thesis director) / Holgate, Matthew (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134817-Thumbnail Image.png
Description
For the past two decades, advanced Limb Gait Simulators and Exoskeletons have been developed to improve walking rehabilitation. A Limb Gait Simulator is used to analyze the human step cycle and/or assist a user walking on a treadmill. Most modern limb gait simulators, such as ALEX, have proven themselves effective

For the past two decades, advanced Limb Gait Simulators and Exoskeletons have been developed to improve walking rehabilitation. A Limb Gait Simulator is used to analyze the human step cycle and/or assist a user walking on a treadmill. Most modern limb gait simulators, such as ALEX, have proven themselves effective and reliable through their usage of motors, springs, cables, elastics, pneumatics and reaction loads. These mechanisms apply internal forces and reaction loads to the body. On the other hand, external forces are those caused by an external agent outside the system such as air, water, or magnets. A design for an exoskeleton using external forces has seldom been attempted by researchers. This thesis project focuses on the development of a Limb Gait Simulator based on a Pure External Force and has proven its effectiveness in generating torque on the human leg. The external force is generated through air propulsion using an Electric Ducted Fan (EDF) motor. Such a motor is typically used for remote control airplanes, but their applications can go beyond this. The objective of this research is to generate torque on the human leg through the control of the EDF engines thrust and the opening/closing of the reverse thruster flaps. This device qualifies as "assist as needed"; the user is entirely in control of how much assistance he or she may want. Static thrust values for the EDF engine are recorded using a thrust test stand. The product of the thrust (N) and the distance on the thigh (m) is the resulting torque. With the motor running at maximum RPM, the highest torque value reached was that of 3.93 (Nm). The motor EDF motor is powered by a 6S 5000 mAh LiPo battery. This torque value could be increased with the usage of a second battery connected in series, but this comes at a price. The designed limb gait simulator demonstrates that external forces, such as air, could have potential in the development of future rehabilitation devices.
ContributorsToulouse, Tanguy Nathan (Author) / Sugar, Thomas (Thesis director) / Artemiadis, Panagiotis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135476-Thumbnail Image.png
Description
The aim of this project was to develop user-friendly methods for programming and controlling a new type of small robot platform, called Pheeno, both individually and as part of a group. Two literature reviews are presented to justify the need for these robots and to discuss what other platforms have

The aim of this project was to develop user-friendly methods for programming and controlling a new type of small robot platform, called Pheeno, both individually and as part of a group. Two literature reviews are presented to justify the need for these robots and to discuss what other platforms have been developed for similar applications. In order to accomplish control of multiple robots work was done on controlling a single robot first. The response of a gripper arm attachment for the robot was smoothed, graphical user interfaces were developed, and commands were sent to a single robot using a video game controller. For command of multiple robots a class was developed in Python to make it simpler to send commands and keep track of different characteristics of each individual robot. A simple script was also created as a proof of concept to show how threading could be used to send different commands simultaneously to multiple robots in order to test algorithms on a group of robots. The class and two other scripts necessary for implementing the class are also presented to make it possible for future use of the given work.
ContributorsHutchins, Gregory Scott (Author) / Berman, Spring (Thesis director) / Artemiadis, Panagiotis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
131375-Thumbnail Image.png
Description
In this article we present a program that is supplemental to a low-cost force-sensing quadrupedal laminate robot platform previously developed by Ben Shuch. The robot has four legs with two degrees of freedom apiece. Each leg is a four-bar mechanism controlled by two servo motors. The program that has been

In this article we present a program that is supplemental to a low-cost force-sensing quadrupedal laminate robot platform previously developed by Ben Shuch. The robot has four legs with two degrees of freedom apiece. Each leg is a four-bar mechanism controlled by two servo motors. The program that has been developed allows the user to predict the force distribution of the robot based on its configuration and the angle of the ground it is standing on. Through the use of this program, future students working on research involving this robot will be able to calculate the force distribution of the robot based on its configuration and generate ideal configurations of the robot using data gathered from force sensors attached to its feet.
ContributorsRoush, Dante Alexander (Author) / Aukes, Daniel M. (Thesis director) / Zhang, Wenlong (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05