Matching Items (40)
Filtering by

Clear all filters

151240-Thumbnail Image.png
Description
Nanoparticles are ubiquitous in various fields due to their unique properties not seen in similar bulk materials. Among them, core-shell composite nanoparticles are an important class of materials which are attractive for their applications in catalysis, sensing, electromagnetic shielding, drug delivery, and environmental remediation. This dissertation focuses on the study

Nanoparticles are ubiquitous in various fields due to their unique properties not seen in similar bulk materials. Among them, core-shell composite nanoparticles are an important class of materials which are attractive for their applications in catalysis, sensing, electromagnetic shielding, drug delivery, and environmental remediation. This dissertation focuses on the study of core-shell type of nanoparticles where a polymer serves as the core and inorganic nanoparticles are the shell. This is an interesting class of supramolecular building blocks and can "exhibit unusual, possibly unique, properties which cannot be obtained simply by co-mixing polymer and inorganic particles". The one-step Pickering emulsion polymerization method was successfully developed and applied to synthesize polystyrene-silica core-shell composite particles. Possible mechanisms of the Pickering emulsion polymerization were also explored. The silica nanoparticles were thermodynamically favorable to self-assemble at liquid-liquid interfaces at the initial stage of polymerization and remained at the interface to finally form the shells of the composite particles. More importantly, Pickering emulsion polymerization was employed to synthesize polystyrene/poly(N-isopropylacrylamide) (PNIPAAm)-silica core-shell nanoparticles with N-isopropylacrylamide incorporated into the core as a co-monomer. The composite nanoparticles were temperature sensitive and could be up-taken by human prostate cancer cells and demonstrated effectiveness in drug delivery and cancer therapy. Similarly, by incorporating poly-2-(N,N)-dimethylamino)ethyl methacrylate (PDMA) into the core, pH sensitive core-shell composite nanoparticles were synthesized and applied as effective carriers to release a rheological modifier upon a pH change. Finally, the research focuses on facile approaches to engineer the transition of the temperature-sensitive particles and develop composite core-shell nanoparticles with a metallic shell.
ContributorsSanyal, Sriya (Author) / Dai, Lenore L. (Thesis advisor) / Jiang, Hanqing (Committee member) / Lind, Mary L. (Committee member) / Phelan, Patrick (Committee member) / Rege, Kaushal (Committee member) / Arizona State University (Publisher)
Created2012
149408-Thumbnail Image.png
Description
This study analyzes the thermoelectric phenomena of nanoparticle suspensions, which are composed of liquid and solid nanoparticles that show a relatively stable Seebeck coefficient as bulk solids near room temperature. The approach is to explore the thermoelectric character of the nanoparticle suspensions, predict the outcome of the experiment and compare

This study analyzes the thermoelectric phenomena of nanoparticle suspensions, which are composed of liquid and solid nanoparticles that show a relatively stable Seebeck coefficient as bulk solids near room temperature. The approach is to explore the thermoelectric character of the nanoparticle suspensions, predict the outcome of the experiment and compare the experimental data with anticipated results. In the experiment, the nanoparticle suspension is contained in a 15cm*2.5cm*2.5cm glass container, the temperature gradient ranges from 20 °C to 60 °C, and room temperature fluctuates from 20 °C to 23°C. The measured nanoparticles include multiwall carbon nanotubes, aluminum dioxide and bismuth telluride. A temperature gradient from 20 °C to 60 °C is imposed along the length of the container, and the resulting voltage (if any) is measured. Both heating and cooling processes are measured. With three different nanoparticle suspensions (carbon nano tubes, Al2O3 nanoparticles and Bi2Te3 nanoparticles), the correlation between temperature gradient and voltage is correspondingly 8%, 38% and 96%. A comparison of results calculated from the bulk Seebeck coefficients with our measured results indicate that the Seebeck coefficient measured for each suspension is much more than anticipated, which indicates that the thermophoresis effect could have enhanced the voltage. Further research with a closed-loop system might be able to affirm the results of this study.
ContributorsZhu, Moxuan (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Prasher, Ravi (Committee member) / Arizona State University (Publisher)
Created2010
134663-Thumbnail Image.png
Description
Solid-state lithium-ion batteries are a major area of research due to their increased safety characteristics over conventional liquid electrolyte batteries. Lithium lanthanum zirconate (LLZO) is a promising garnet-type ceramic for use as a solid-state electrolyte due to its high ionic conductivity. The material exists in two dierent phases, one that

Solid-state lithium-ion batteries are a major area of research due to their increased safety characteristics over conventional liquid electrolyte batteries. Lithium lanthanum zirconate (LLZO) is a promising garnet-type ceramic for use as a solid-state electrolyte due to its high ionic conductivity. The material exists in two dierent phases, one that is cubic in structure and one that is tetragonal. One potential synthesis method that results in LLZO in the more useful, cubic phase, is electrospinning, where a mat of nanowires is spun and then calcined into LLZO. A phase containing lanthanum zirconate (LZO) and amorphous lithium occursas an intermediate during the calcination process. LZO has been shown to be a sintering aid for LLZO, allowing for lower sintering temperatures. Here it is shown the eects of internal LZO on the sintered pellets. This is done by varying the 700C calcination time to transform diering amounts of LZO and LLZO in electrospun nanowires, and then using the same sintering parameters for each sample. X-ray diraction was used to get structural and compositional analysis of both the calcined powders and sintered pellets. Pellets formed from wires calcined at 1 hour or longer contained only LLZO even if the calcined powder had only undergone the rst phase transformation. The relative density of the pellet with no initial LLZO of 61.0% was higher than that of the pellet with no LZO, which had a relative density of 57.7%. This allows for the same, or slightly higher, quality material to be synthesized with a shorter amount of processing time.
ContributorsLondon, Nathan Harry (Author) / Chan, Candace (Thesis director) / Tongay, Sefaattin (Committee member) / Department of Physics (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
161617-Thumbnail Image.png
Description
In the Rare-earth-Tri-telluride family, (RTe3s) [R=La, Ce, Nd, Sm, Gd, Tb, Dy, Er, Ho, Tm] the emergence of Charge Density Waves, (CDW) has been under investigation for a long time due to broadly tunable properties by either chemical substitution or pressure application. These quasi 2D Layered materials RTe3s undergo Fermi

In the Rare-earth-Tri-telluride family, (RTe3s) [R=La, Ce, Nd, Sm, Gd, Tb, Dy, Er, Ho, Tm] the emergence of Charge Density Waves, (CDW) has been under investigation for a long time due to broadly tunable properties by either chemical substitution or pressure application. These quasi 2D Layered materials RTe3s undergo Fermi Surface Nesting leading to CDW instability. CDWs are electronic instabilities found in low-dimensional materials with highly anisotropic electronic structures. Since the CDW is predominantly driven by Fermi-surface (FS) nesting, it is especially sensitive to pressure-induced changes in the electronic structure. The FS of RTe3s is a function of p-orbitals of Tellurium atoms, which are arranged in two adjacent planes in the crystal structure. Although the FS and electronic structure possess a nearly four-fold symmetry, RTe3s form an incommensurate CDW.This dissertation is structured as follows: Chapter 1 includes basic ideas of Quantum materials, followed by an introduction to CDW and RTe3s. In Chapter 2, there are fundamentals of crystal growth by Chemical Vapor Transport, including various precursors, transport agent, temperature gradient, and rate of the reaction. After the growth, the crystals were confirmed for lattice vibrations by Raman, for composition by Energy Dispersive Spectroscopy; crystal structure and orientation were confirmed by X-ray Diffraction; magnetic ordering was established by Vibrating sample measurement. Detailed CDW study was done on various RTe3s by Raman spectroscopy. The basic mechanism and instrumentations used in these characterizations are explained in Chapter 3. Chapter 4 includes experimental data for crystal growth and results of these characterizations for Parent RTe3s. Chapter 5 includes fundamental insights on Cationic alloying of RTe3s, along with one alloy system’s crystal growth and characterization. This work tries to explain the behavior of CDW by a Temperature-dependent Raman study of RTe3s established the CDW transition temperature accompanied by Phonon softening; Angle-resolved Raman data confirming the nearly four-fold symmetry; thickness-dependent Raman spectroscopy resulting in the conclusion that as thickness decreases CDW transition temperature increases. Also, CDW transition is analyzed as a function of alloying.
ContributorsAttarde, Yashika (Author) / Tongay, Sefaattin (Thesis advisor) / Botana, Antia (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2021
171974-Thumbnail Image.png
Description
The objective of this dissertation is to study the optical and radiative properties of inhomogeneous metallic structures. In the ongoing search for new materials with tunable optical characteristics, porous metals and nanowires provides an extensive design space to engineer its optical response based on the morphology-dependent phenomena.This dissertation firstly discusses

The objective of this dissertation is to study the optical and radiative properties of inhomogeneous metallic structures. In the ongoing search for new materials with tunable optical characteristics, porous metals and nanowires provides an extensive design space to engineer its optical response based on the morphology-dependent phenomena.This dissertation firstly discusses the use of aluminum nanopillar array on a quartz substrate as spectrally selective optical filter with narrowband transmission for thermophotovoltaic systems. The narrow-band transmission enhancement is attributed to the magnetic polariton resonance between neighboring aluminum nanopillars. Tuning of the resonance wavelengths for selective filters was achieved by changing the nanopillar geometry. It concludes by showing improved efficiency of Gallium-Antimonide thermophotovoltaic system by coupling the designed filter with the cell. Next, isotropic nanoporous gold films are investigated for applications in energy conversion and three-dimensional laser printing. The fabricated nanoporous gold samples are characterized by scanning electron microscopy, and the spectral hemispherical reflectance is measured with an integrating sphere. The effective isotropic optical constants of nanoporous gold with varying pore volume fraction are modeled using the Bruggeman effective medium theory. Nanoporous gold are metastable and to understand its temperature dependent optical properties, a lab-scale fiber-based optical spectrometer setup is developed to characterize the in-situ specular reflectance of nanoporous gold thin films at temperatures ranging from 25 to 500 oC. The in-situ and the ex-situ measurements suggest that the ii specular, diffuse, and hemispherical reflectance varies as a function of temperature due to the morphology (ligament diameter) change observed. The dissertation continues with modeling and measurements of the radiative properties of porous powders. The study shows the enhanced absorption by mixing porous copper to copper powder. This is important from the viewpoint of scalability to get end products such as sheets and tubes with the requirement of high absorptance that can be produced through three-dimensional printing. Finally, the dissertation concludes with recommendations on the methods to fabricate the suggested optical filters to improve thermophotovoltaic system efficiencies. The results presented in this dissertation will facilitate not only the manufacturing of materials but also the promising applications in solar thermal energy and optical systems.
ContributorsRamesh, Rajagopalan (Author) / Wang, Liping (Thesis advisor) / Azeredo, Bruno (Thesis advisor) / Phelan, Patrick (Committee member) / Yu, Hongbin (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2022
189347-Thumbnail Image.png
Description
Doping is the cornerstone of Semiconductor technology, enabling the functionalities of modern digital electronics. Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have tunable direct bandgaps, strong many-body interactions, and promising applications in future quantum information sciences, optoelectronic, spintronic, and valleytronic devices. However, their wafer-scale synthesis and precisely controllable doping are challenging.

Doping is the cornerstone of Semiconductor technology, enabling the functionalities of modern digital electronics. Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have tunable direct bandgaps, strong many-body interactions, and promising applications in future quantum information sciences, optoelectronic, spintronic, and valleytronic devices. However, their wafer-scale synthesis and precisely controllable doping are challenging. Moreover, there is no fixed framework to identify the doping concentration, which impedes their process integration for future commercialization. This work utilizes the Neutron Transmutation Doping technique to control the doping uniformly and precisely in TMDCs. Rhenium and Tin dopants are introduced in Tungsten- and Indium-based Chalcogenides, respectively. Fine-tuning over 0.001% doping level is achieved. Precise analytical techniques such as Gamma spectroscopy and Secondary Ion Mass Spectrometry are used to quantify ultra-low doping levels ranging from 0.005-0.01% with minimal error. Dopants in 2D TMDCs often exhibit a broad stokes-shifted emission, with high linewidths, due to extrinsic effects such as substrate disorder and surface adsorbates. A well-defined bound exciton emission induced by Rhenium dopants in monolayer WSe2 and WS2 at liquid nitrogen temperatures is reported along with specific annealing regimes to minimize the defects induced in the Neutron Transmutation process. This work demonstrates a framework for Neutron Doping in 2D materials, which can be a scalable process for controlling doping and doping-induced effects in 2D materials.
ContributorsLakhavade, Sushant Sambhaji (Author) / Tongay, Sefaattin (Thesis advisor) / Alford, Terry (Committee member) / Yang, Sui (Committee member) / Arizona State University (Publisher)
Created2023
171943-Thumbnail Image.png
Description
In the past decade, 2D materials especially transition metal dichalcogenides (TMDc), have been studied extensively for their remarkable optical and electrical properties arising from their reduced dimensionality. A new class of materials developed based on 2D TMDc that has gained great interest in recent years is Janus crystals. In contrast

In the past decade, 2D materials especially transition metal dichalcogenides (TMDc), have been studied extensively for their remarkable optical and electrical properties arising from their reduced dimensionality. A new class of materials developed based on 2D TMDc that has gained great interest in recent years is Janus crystals. In contrast to TMDc, Janus monolayer consists of two different chalcogen atomic layers between which the transition metal layer is sandwiched. This structural asymmetry causes strain buildup or a vertically oriented electric field to form within the monolayer. The presence of strain brings questions about the materials' synthesis approach, particularly when strain begins to accumulate and whether it causes defects within monolayers.The initial research demonstrated that Janus materials could be synthesized at high temperatures inside a chemical vapor deposition (CVD) furnace. Recently, a new method (selective epitaxy atomic replacement - SEAR) for plasma-based room temperature Janus crystal synthesis was proposed. In this method etching and replacing top layer chalcogen atoms of the TMDc monolayer happens with reactive hydrogen and sulfur radicals. Based on Raman and photoluminescence studies, the SEAR method produces high-quality Janus materials. Another method used to create Janus materials was the pulsed laser deposition (PLD) technique, which utilizes the interaction of sulfur/selenium plume with monolayer to replace the top chalcogen atomic layer in a single step. The goal of this analysis is to characterize microscale defects that appear in 2D Janus materials after they are synthesized using SEAR and PLD techniques. Various microscopic techniques were used for this purpose, as well as to understand the mechanism of defect formation. The main mechanism of defect formation was proposed to be strain release phenomena. Furthermore, different chalcogen atom positions within the monolayer result in different types of defects, such as the appearance of cracks or wrinkles across monolayers. In addition to investigating sample topography, Kelvin probe force microscopy (KPFM) was used to examine its electrical properties to see if the formation of defects impacts work function. Further study directions have been suggested for identifying and characterizing defects and their formation mechanism in the Janus crystals to understand their fundamental properties.
ContributorsSinha, Shantanu (Author) / Tongay, Sefaattin (Thesis advisor) / Alford, Terry (Committee member) / Yang, Sui (Committee member) / Arizona State University (Publisher)
Created2022
171946-Thumbnail Image.png
Description
Siloxane, a common contaminant present in biogas, is known for adverse effects on cogeneration prime movers. In this work, the solid oxide fuel cell (SOFC) nickel-yttria stabilized zirconia (Ni-YSZ) anode degradation due to poisoning by siloxane was investigated. For this purpose, experiments with different fuels, different deposition substrate materials, different

Siloxane, a common contaminant present in biogas, is known for adverse effects on cogeneration prime movers. In this work, the solid oxide fuel cell (SOFC) nickel-yttria stabilized zirconia (Ni-YSZ) anode degradation due to poisoning by siloxane was investigated. For this purpose, experiments with different fuels, different deposition substrate materials, different structure of contamination siloxane (cyclic and linear) and entire failure process are conducted in this study. The electrochemical and material characterization methods, such as Electrochemical Impedance Spectroscopy (EIS), Scanning Electron Microscope- Wavelength Dispersive Spectrometers (SEM-WDS), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), and Raman spectroscopy, were applied to investigate the anode degradation behavior. The electrochemical characterization results show that the SOFCs performance degradation caused by siloxane contamination is irreversible under bio-syngas condition. An equivalent circuit model (ECM) is developed based on electrochemical characterization results. Based on the Distribution of Relaxation Time (DRT) method, the detailed microstructure parameter changes are evaluated corresponding to the ECM results. The results contradict the previously proposed siloxane degradation mechanism as the experimental results show that water can inhibit anode deactivation. For anode materials, Ni is considered a major factor in siloxane deposition reactions in Ni-YSZ anode. Based on the results of XPS, XRD and WDS analysis, an initial layer of carbon deposition develops and is considered a critical process for the siloxane deposition reaction. Based on the experimental results in this study and previous studies about siloxane deposition on metal oxides, the proposed siloxane deposition process occurs in stages consisting of the siloxane adsorption, initial carbon deposition, siloxane polymerization and amorphous silicon dioxide deposition.
ContributorsTian, Jiashen (Author) / Milcarek, Ryan J. (Thesis advisor) / Muhich, Christopher (Committee member) / Wang, Liping (Committee member) / Phelan, Patrick (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2022
171653-Thumbnail Image.png
Description
Complex perovskite materials, including Ba(Zn1/3Ta2/3)O3 (BZT), are commonly used to make resonators and filters in communication systems because of their low dielectric loss and high-quality factors (Q). Transition metal additives are introduced (i.e., Ni2+, Co2+, Mn2+) to act as sintering agents and tune their temperature coefficient to zero or near-zero.

Complex perovskite materials, including Ba(Zn1/3Ta2/3)O3 (BZT), are commonly used to make resonators and filters in communication systems because of their low dielectric loss and high-quality factors (Q). Transition metal additives are introduced (i.e., Ni2+, Co2+, Mn2+) to act as sintering agents and tune their temperature coefficient to zero or near-zero. However, losses in these commercial dielectric materials at cryogenic temperatures increase markedly due to spin-excitation resulting from the presence of paramagnetic defects. Applying a large magnetic field (e.g., 5 Tesla) quenches these losses and has allowed the study of other loss mechanisms present at low temperatures. Work was performed on Fe3+ doped LaAlO3. At high magnetic fields, the residual losses versus temperature plots exhibit Debye peaks at ~40 K, ~75 K, and ~215 K temperature and can be tentatively associated with defect reactions O_i^x+V_O^x→O_i^'+V_O^•, Fe_Al^x+V_Al^"→Fe_Al^'+V_Al^' and Al_i^x+Al_i^(••)→〖2Al〗_i^•, respectively. Peaks in the loss tangent versus temperature graph of Zn-deficient BZT indicate a higher concentration of defects and appear to result from conduction losses.Guided by the knowledge gained from this study, a systematic study to develop high-performance microwave materials for ultra-high performance at cryogenic temperatures was performed. To this end, the production and characterization of perovskite materials that were either undoped or contained non-paramagnetic additives were carried out. Synthesis of BZT ceramic with over 98% theoretical density was obtained using B2O3 or BaZrO3 additives. At 4 K, the highest Q x f product of 283,000 GHz was recorded for 5% BaZrO3 doped BZT. A portable, inexpensive open-air spectrometer was designed, built, and tested to make the electron paramagnetic resonance (EPR) technique more accessible for high-school and university lab instruction. In this design, the sample is placed near a dielectric resonator and does not need to be enclosed in a cavity, as is used in commercial EPR spectrometers. Permanent magnets used produce fields up to 1500 G, enabling EPR measurements up to 3 GHz.
ContributorsGajare, Siddhesh Girish (Author) / Newman, Nathan (Thesis advisor) / Alford, Terry (Committee member) / Tongay, Sefaattin (Committee member) / Chamberlin, Ralph (Committee member) / Arizona State University (Publisher)
Created2022
171428-Thumbnail Image.png
Description
Many important technologies, including electronics, computing, communications, optoelectronics, and sensing, are built on semiconductors. The band gap is a crucial factor in determining the electrical and optical properties of semiconductors. Beyond graphene, newly found two-dimensional (2D) materials have semiconducting bandgaps that range from the ultraviolet in hexagonal boron nitride to

Many important technologies, including electronics, computing, communications, optoelectronics, and sensing, are built on semiconductors. The band gap is a crucial factor in determining the electrical and optical properties of semiconductors. Beyond graphene, newly found two-dimensional (2D) materials have semiconducting bandgaps that range from the ultraviolet in hexagonal boron nitride to the terahertz and mid-infrared in bilayer graphene and black phosphorus, visible in transition metal dichalcogenides (TMDs). These 2D materials were shown to have highly controllable bandgaps which can be controlled by alloying. Only a small number of TMDs and monochalcogenides have been alloyed, though, because alloying compromised the material's Van der Waals (Vdw) property and the stability of the host crystal lattice phase. Phase transition in 2D materials is an interesting phenomenon where work has been done only on few TMDs namely MoTe2, MoS2, TaS2 etc.In order to change the band gaps and move them towards the UV (ultraviolet) and IR (infrared) regions, this work has developed new 2D alloys in InSe by alloying them with S and Te at 10% increasing concentrations. As the concentration of the chalcogens (S and Te) increased past a certain point, a structural phase transition in the alloys was observed. However, pinpointing the exact concentration for phase change and inducing phase change using external stimuli will be a thing of the future. The resulting changes in the crystal structure and band gap were characterized using some basic characterization techniques like scanning electron microscopy (SEM), X-ray Diffraction (XRD), Raman and photoluminescence spectroscopy.
ContributorsYarra, Anvesh Sai (Author) / Tongay, Sefaattin (Thesis advisor) / Yang, Sui (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2022