Matching Items (59)
Filtering by

Clear all filters

150025-Thumbnail Image.png
Description
With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is

With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is lacking. Reliable experimental and numerical analysis of lead-free solder joints in the intermediate strain rate regime need to be investigated. This dissertation mainly focuses on exploring the mechanical shock behavior of lead-free tin-rich solder alloys via multiscale modeling and numerical simulations. First, the macroscopic stress/strain behaviors of three bulk lead-free tin-rich solders were tested over a range of strain rates from 0.001/s to 30/s. Finite element analysis was conducted to determine appropriate specimen geometry that could reach a homogeneous stress/strain field and a relatively high strain rate. A novel self-consistent true stress correction method is developed to compensate the inaccuracy caused by the triaxial stress state at the post-necking stage. Then the material property of micron-scale intermetallic was examined by micro-compression test. The accuracy of this measure is systematically validated by finite element analysis, and empirical adjustments are provided. Moreover, the interfacial property of the solder/intermetallic interface is investigated, and a continuum traction-separation law of this interface is developed from an atomistic-based cohesive element method. The macroscopic stress/strain relation and microstructural properties are combined together to form a multiscale material behavior via a stochastic approach for both solder and intermetallic. As a result, solder is modeled by porous plasticity with random voids, and intermetallic is characterized as brittle material with random vulnerable region. Thereafter, the porous plasticity fracture of the solders and the brittle fracture of the intermetallics are coupled together in one finite element model. Finally, this study yields a multiscale model to understand and predict the mechanical shock behavior of lead-free tin-rich solder joints. Different fracture patterns are observed for various strain rates and/or intermetallic thicknesses. The predictions have a good agreement with the theory and experiments.
ContributorsFei, Huiyang (Author) / Jiang, Hanqing (Thesis advisor) / Chawla, Nikhilesh (Thesis advisor) / Tasooji, Amaneh (Committee member) / Mobasher, Barzin (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2011
151406-Thumbnail Image.png
Description
Alkali-activated aluminosilicates, commonly known as "geopolymers", are being increasingly studied as a potential replacement for Portland cement. These binders use an alkaline activator, typically alkali silicates, alkali hydroxides or a combination of both along with a silica-and-alumina rich material, such as fly ash or slag, to form a final product

Alkali-activated aluminosilicates, commonly known as "geopolymers", are being increasingly studied as a potential replacement for Portland cement. These binders use an alkaline activator, typically alkali silicates, alkali hydroxides or a combination of both along with a silica-and-alumina rich material, such as fly ash or slag, to form a final product with properties comparable to or better than those of ordinary Portland cement. The kinetics of alkali activation is highly dependent on the chemical composition of the binder material and the activator concentration. The influence of binder composition (slag, fly ash or both), different levels of alkalinity, expressed using the ratios of Na2O-to-binders (n) and activator SiO2-to-Na2O ratios (Ms), on the early age behavior in sodium silicate solution (waterglass) activated fly ash-slag blended systems is discussed in this thesis. Optimal binder composition and the n values are selected based on the setting times. Higher activator alkalinity (n value) is required when the amount of slag in the fly ash-slag blended mixtures is reduced. Isothermal calorimetry is performed to evaluate the early age hydration process and to understand the reaction kinetics of the alkali activated systems. The differences in the calorimetric signatures between waterglass activated slag and fly ash-slag blends facilitate an understanding of the impact of the binder composition on the reaction rates. Kinetic modeling is used to quantify the differences in reaction kinetics using the Exponential as well as the Knudsen method. The influence of temperature on the reaction kinetics of activated slag and fly ash-slag blends based on the hydration parameters are discussed. Very high compressive strengths can be obtained both at early ages as well as later ages (more than 70 MPa) with waterglass activated slag mortars. Compressive strength decreases with the increase in the fly ash content. A qualitative evidence of leaching is presented through the electrical conductivity changes in the saturating solution. The impact of leaching and the strength loss is found to be generally higher for the mixtures made using a higher activator Ms and a higher n value. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) is used to obtain information about the reaction products.
ContributorsChithiraputhiran, Sundara Raman (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniyam D (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2012
152088-Thumbnail Image.png
Description
The alkali activation of aluminosilicate materials as binder systems derived from industrial byproducts have been extensively studied due to the advantages they offer in terms enhanced material properties, while increasing sustainability by the reuse of industrial waste and byproducts and reducing the adverse impacts of OPC production. Fly ash and

The alkali activation of aluminosilicate materials as binder systems derived from industrial byproducts have been extensively studied due to the advantages they offer in terms enhanced material properties, while increasing sustainability by the reuse of industrial waste and byproducts and reducing the adverse impacts of OPC production. Fly ash and ground granulated blast furnace slag are commonly used for their content of soluble silica and aluminate species that can undergo dissolution, polymerization with the alkali, condensation on particle surfaces and solidification. The following topics are the focus of this thesis: (i) the use of microwave assisted thermal processing, in addition to heat-curing as a means of alkali activation and (ii) the relative effects of alkali cations (K or Na) in the activator (powder activators) on the mechanical properties and chemical structure of these systems. Unsuitable curing conditions instigate carbonation, which in turn lowers the pH of the system causing significant reductions in the rate of fly ash activation and mechanical strength development. This study explores the effects of sealing the samples during the curing process, which effectively traps the free water in the system, and allows for increased aluminosilicate activation. The use of microwave-curing in lieu of thermal-curing is also studied in order to reduce energy consumption and for its ability to provide fast volumetric heating. Potassium-based powder activators dry blended into the slag binder system is shown to be effective in obtaining very high compressive strengths under moist curing conditions (greater than 70 MPa), whereas sodium-based powder activation is much weaker (around 25 MPa). Compressive strength decreases when fly ash is introduced into the system. Isothermal calorimetry is used to evaluate the early hydration process, and to understand the reaction kinetics of the alkali powder activated systems. A qualitative evidence of the alkali-hydroxide concentration of the paste pore solution through the use of electrical conductivity measurements is also presented, with the results indicating the ion concentration of alkali is more prevalent in the pore solution of potassium-based systems. The use of advanced spectroscopic and thermal analysis techniques to distinguish the influence of studied parameters is also discussed.
ContributorsChowdhury, Ussala (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramanium D. (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2013
150448-Thumbnail Image.png
Description
Concrete design has recently seen a shift in focus from prescriptive specifications to performance based specifications with increasing demands for sustainable products. Fiber reinforced composites (FRC) provides unique properties to a material that is very weak under tensile loads. The addition of fibers to a concrete mix provides additional ductility

Concrete design has recently seen a shift in focus from prescriptive specifications to performance based specifications with increasing demands for sustainable products. Fiber reinforced composites (FRC) provides unique properties to a material that is very weak under tensile loads. The addition of fibers to a concrete mix provides additional ductility and reduces the propagation of cracks in the concrete structure. It is the fibers that bridge the crack and dissipate the incurred strain energy in the form of a fiber-pullout mechanism. The addition of fibers plays an important role in tunnel lining systems and in reducing shrinkage cracking in high performance concretes. The interest in most design situations is the load where cracking first takes place. Typically the post crack response will exhibit either a load bearing increase as deflection continues, or a load bearing decrease as deflection continues. These behaviors are referred to as strain hardening and strain softening respectively. A strain softening or hardening response is used to model the behavior of different types of fiber reinforced concrete and simulate the experimental flexural response. Closed form equations for moment-curvature response of rectangular beams under four and three point loading in conjunction with crack localization rules are utilized. As a result, the stress distribution that considers a shifting neutral axis can be simulated which provides a more accurate representation of the residual strength of the fiber cement composites. The use of typical residual strength parameters by standards organizations ASTM, JCI and RILEM are examined to be incorrect in their linear elastic assumption of FRC behavior. Finite element models were implemented to study the effects and simulate the load defection response of fiber reinforced shotcrete round discrete panels (RDP's) tested in accordance with ASTM C-1550. The back-calculated material properties from the flexural tests were used as a basis for the FEM material models. Further development of FEM beams were also used to provide additional comparisons in residual strengths of early age samples. A correlation between the RDP and flexural beam test was generated based a relationship between normalized toughness with respect to the newly generated crack surfaces. A set of design equations are proposed using a residual strength correction factor generated by the model and produce the design moment based on specified concrete slab geometry.
ContributorsBarsby, Christopher (Author) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2011
150550-Thumbnail Image.png
Description
Ultra-concealable multi-threat body armor used by law-enforcement is a multi-purpose armor that protects against attacks from knife, spikes, and small caliber rounds. The design of this type of armor involves fiber-resin composite materials that are flexible, light, are not unduly affected by environmental conditions, and perform as required. The National

Ultra-concealable multi-threat body armor used by law-enforcement is a multi-purpose armor that protects against attacks from knife, spikes, and small caliber rounds. The design of this type of armor involves fiber-resin composite materials that are flexible, light, are not unduly affected by environmental conditions, and perform as required. The National Institute of Justice (NIJ) characterizes this type of armor as low-level protection armor. NIJ also specifies the geometry of the knife and spike as well as the strike energy levels required for this level of protection. The biggest challenges are to design a thin, lightweight and ultra-concealable armor that can be worn under street clothes. In this study, several fundamental tasks involved in the design of such armor are addressed. First, the roles of design of experiments and regression analysis in experimental testing and finite element analysis are presented. Second, off-the-shelf materials available from international material manufacturers are characterized via laboratory experiments. Third, the calibration process required for a constitutive model is explained through the use of experimental data and computer software. Various material models in LS-DYNA for use in the finite element model are discussed. Numerical results are generated via finite element simulations and are compared against experimental data thus establishing the foundation for optimizing the design.
ContributorsVokshi, Erblina (Author) / Rajan, Subramaniam D. (Thesis advisor) / Neithalath, Narayanan (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2012
133654-Thumbnail Image.png
Description
Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V, at the sub-cycle scale, or within a single loading cycle.

Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V, at the sub-cycle scale, or within a single loading cycle. Using scanning electron microscopy (SEM), imaging analysis is performed to observe crack behavior at ten loading steps throughout the loading and unloading paths. Analysis involves measuring the incremental crack growth and crack tip opening displacement (CTOD) of specimens at loading ratios of 0.1, 0.3, and 0.5. This report defines the relationship between crack growth and the stress intensity factor, K, of the specimens, as well as the relationship between the R-ratio and stress opening level. The crack closure phenomena and effect of microcracks are discussed as they influence the crack growth behavior. This method has previously been used to characterize crack growth in Al 7075-T6. The results for Ti-6Al-4V are compared to these previous findings in order to strengthen conclusions about crack growth behavior.
ContributorsNazareno, Alyssa Noelle (Author) / Liu, Yongming (Thesis director) / Jiao, Yang (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
171769-Thumbnail Image.png
Description
Electromigration, the net atomic diffusion associated with the momentum transfer from electrons moving through a material, is a major cause of device and component failure in microelectronics. The deleterious effects from electromigration rise with increased current density, a parameter that will only continue to increase as our electronic devices get

Electromigration, the net atomic diffusion associated with the momentum transfer from electrons moving through a material, is a major cause of device and component failure in microelectronics. The deleterious effects from electromigration rise with increased current density, a parameter that will only continue to increase as our electronic devices get smaller and more compact. Understanding the dynamic diffusional pathways and mechanisms of these electromigration-induced and propagated defects can further our attempts at mitigating these failure modes. This dissertation provides insight into the relationships between these defects and parameters of electric field strength, grain boundary misorientation, grain size, void size, eigenstrain, varied atomic mobilities, and microstructure.First, an existing phase-field model was modified to investigate the various defect modes associated with electromigration in an equiaxed non-columnar microstructure. Of specific interest was the effect of grain boundary misalignment with respect to current flow and the mechanisms responsible for the changes in defect kinetics. Grain size, magnitude of externally applied electric field, and the utilization of locally distinct atomic mobilities were other parameters investigated. Networks of randomly distributed grains, a common microstructure of interconnects, were simulated in both 2- and 3-dimensions displaying the effects of 3-D capillarity on diffusional dynamics. Also, a numerical model was developed to study the effect of electromigration on void migration and coalescence. Void migration rates were found to be slowed from compressive forces and the nature of the deformation concurrent with migration was examined through the lens of chemical potential. Void migration was also validated with previously reported theoretical explanations. Void coalescence and void budding were investigated and found to be dependent on the magnitude of interfacial energy and electric field strength. A grasp on the mechanistic pathways of electromigration-induced defect evolution is imperative to the development of reliable electronics, especially as electronic devices continue to miniaturize. This dissertation displays a working understanding of the mechanistic pathways interconnects can fail due to electromigration, as well as provide direction for future research and understanding.
ContributorsFarmer, William McHann (Author) / Ankit, Kumar (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Jiao, Yang (Committee member) / McCue, Ian (Committee member) / Arizona State University (Publisher)
Created2022
171473-Thumbnail Image.png
Description
Applications such as heat exchangers, surface-based cellular structures, rotating blades, and waveguides rely on thin metal walls as crucial constituent elements of the structure. The design freedom enabled by laser powder bed fusion has led to an interest in exploiting this technology to further the performance of these components, many

Applications such as heat exchangers, surface-based cellular structures, rotating blades, and waveguides rely on thin metal walls as crucial constituent elements of the structure. The design freedom enabled by laser powder bed fusion has led to an interest in exploiting this technology to further the performance of these components, many of which retain their as-built surface morphologies on account of their design complexity. However, there is limited understanding of how and why mechanical properties vary by wall thickness for specimens that are additively manufactured and maintain an as-printed surface finish. Critically, the contributions of microstructure and morphology to the mechanical behavior of thin wall laser powder bed fusion structures have yet to be systematically identified and decoupled. This work focuses on elucidating the room temperature quasi-static tensile and high cycle fatigue properties of as-printed, thin-wall Inconel 718 fabricated using laser powder bed fusion, with the aim of addressing this critical gap in the literature. Wall thicknesses studied range from 0.3 - 2.0 mm, and the effects of Hot Isostatic Pressing are also examined, with sheet metal specimens used as a baseline for comparison. Statistical analyses are conducted to identify the significance of the dependence of properties on wall thickness and Hot Isostatic Pressing, as well as to examine correlations of these properties to section area, porosity, and surface roughness. A thorough microstructural study is complemented with a first-of-its-kind study of surface morphology to decouple their contributions and identify underlying causes for observed changes in mechanical properties. This thesis finds that mechanical properties in the quasi-static and fatigue framework do not see appreciable declines until specimen thickness is under 0.75 mm in thickness. The added Hot Isostatic Pressing heat treatment effectively closed pores, recrystallized the grain structure, and provided a more homogenous microstructure that benefits the modulus, tensile strength, elongation, and fatigue performance at higher stresses. Stress heterogeneities, primarily caused by surface defects, negatively affected the thinner specimens disproportionately. Without the use of the Hot Isostatic Pressing, the grain structure remained much more refined and benefitted the yield strength and fatigue endurance limit.
ContributorsParadise, Paul David (Author) / Bhate, Dhruv (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Azeredo, Bruno (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2022
171937-Thumbnail Image.png
Description
Microstructure refinement and alloy additions are considered potential routes to increase high temperature performance of existing metallic superalloys used under extreme conditions. Nanocrystalline (NC) Cu-10at%Ta exhibits such improvements over microstructurally unstable NC metals, leading to enhanced creep behavior compared to its coarse-grained (CG) counterparts. However, the low melting point of

Microstructure refinement and alloy additions are considered potential routes to increase high temperature performance of existing metallic superalloys used under extreme conditions. Nanocrystalline (NC) Cu-10at%Ta exhibits such improvements over microstructurally unstable NC metals, leading to enhanced creep behavior compared to its coarse-grained (CG) counterparts. However, the low melting point of Cu compared to other FCC metals, e.g., Ni, might lead to an early onset of diffusional creep mechanisms. Thus, this research seeks to study the thermo-mechanical behavior and stability of hierarchical (prepared using arc-melting) and NC (prepared by collaborators through powder pressing and annealing) Ni-Y-Zr alloys where Zr is expected to provide solid solution and grain boundary strengthening in hierarchical and NC alloys, respectively, while Ni-Y and Ni-Zr intermetallic precipitates (IMCs) would provide kinetic stability. Hierarchical alloys had microstructures stable up to 1100 °C with ultrafine eutectic of ~300 nm, dendritic arm spacing of ~10 μm, and grain size ~1-2 mm. Room temperature hardness tests along with uniaxial compression performed at 25 and 600 °C revealed that microhardness and yield strength of hierarchical alloys with small amounts of Y (0.5-1wt%) and Zr (1.5-3 wt%) were comparable to Ni-superalloys, due to the hierarchical microstructure and potential presence of nanoscale IMCs. In contrast, NC alloys of the same composition were found to be twice as hard as the hierarchical alloys. Creep tests at 0.5 homologous temperature showed active Coble creep mechanisms in hierarchical alloys at low stresses with creep rates slower than Fe-based superalloys and dislocation creep mechanisms at higher stresses. Creep in NC alloys at lower stresses was only 20 times faster than hierarchical alloys, with the difference in grain size ranging from 10^3 to 10^6 times at the same temperature. These NC alloys showed enhanced creep properties over other NC metals and are expected to have rates equal to or improved over the CG hierarchical alloys with ECAP processing techniques. Lastly, the in-situ wide-angle x-ray scattering (WAXS) measurements during quasi-static and creep tests implied stresses being carried mostly by the matrix before yielding and in the primary creep stage, respectively, while relaxation was observed in Ni5Zr for both hierarchical and NC alloys. Beyond yielding and in the secondary creep stage, lattice strains reached a steady state, thereby, an equilibrium between plastic strain rates was achieved across different phases, so that deformation reaches a saturation state where strain hardening effects are compensated by recovery mechanisms.
ContributorsSharma, Shruti (Author) / Peralta, Pedro (Thesis advisor) / Alford, Terry (Committee member) / Jiao, Yang (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2022
171814-Thumbnail Image.png
Description
Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires an improved understanding of the thermomechanical response of advanced materials

Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires an improved understanding of the thermomechanical response of advanced materials under service conditions. This dissertation provides fundamental investigations of several advanced materials: thermoset polymers, a common matrix material for fiber-reinforced composites and nanocomposites; aluminum alloy 7075-T6 (AA7075-T6), a high-performance aerospace material; and ceramic matrix composites (CMCs), an advanced composite for extreme-temperature applications. To understand matrix interactions with various interfaces and nanoinclusions at their fundamental scale, the properties of thermoset polymers are studied at the atomistic scale. An improved proximity-based molecular dynamics (MD) technique for modeling the crosslinking of thermoset polymers is carefully established, enabling realistic curing simulations through its ability to dynamically and probabilistically perform complex topology transformations. The proximity-based MD curing methodology is then used to explore damage initiation and the local anisotropic evolution of mechanical properties in thermoset polymers under uniaxial tension with an emphasis on changes in stiffness through a series of tensile loading, unloading, and reloading experiments. Aluminum alloys in aerospace applications often require a fatigue life of over 109 cycles, which is well over the number of cycles that can be practically tested using conventional fatigue testing equipment. In order to study these high-life regimes, a detailed ultrasonic cycle fatigue study is presented for AA7075-T6 under fully reversed tension-compression loading. The geometric sensitivity, frequency effects, size effects, surface roughness effects, and the corresponding failure mechanisms for ultrasonic fatigue across different fatigue regimes are investigated. Finally, because CMCs are utilized in extreme environments, oxidation plays an important role in their degradation. A multiphysics modeling methodology is thus developed to address the complex coupling between oxidation, mechanical stress, and oxygen diffusion in heterogeneous carbon fiber-reinforced CMC microstructures.
ContributorsSchichtel, Jacob (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Ghoshal, Anindya (Committee member) / Huang, Huei-Ping (Committee member) / Jiao, Yang (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2022