Matching Items (11)
Filtering by

Clear all filters

156902-Thumbnail Image.png
Description
Pipeline infrastructure forms a vital aspect of the United States economy and standard of living. A majority of the current pipeline systems were installed in the early 1900’s and often lack a reliable database reporting the mechanical properties, and information about manufacturing and installation, thereby raising a concern for their

Pipeline infrastructure forms a vital aspect of the United States economy and standard of living. A majority of the current pipeline systems were installed in the early 1900’s and often lack a reliable database reporting the mechanical properties, and information about manufacturing and installation, thereby raising a concern for their safety and integrity. Testing for the aging pipe strength and toughness estimation without interrupting the transmission and operations thus becomes important. The state-of-the-art techniques tend to focus on the single modality deterministic estimation of pipe strength and do not account for inhomogeneity and uncertainties, many others appear to rely on destructive means. These gaps provide an impetus for novel methods to better characterize the pipe material properties. The focus of this study is the design of a Bayesian Network information fusion model for the prediction of accurate probabilistic pipe strength and consequently the maximum allowable operating pressure. A multimodal diagnosis is performed by assessing the mechanical property variation within the pipe in terms of material property measurements, such as microstructure, composition, hardness and other mechanical properties through experimental analysis, which are then integrated with the Bayesian network model that uses a Markov chain Monte Carlo (MCMC) algorithm. Prototype testing is carried out for model verification, validation and demonstration and data training of the model is employed to obtain a more accurate measure of the probabilistic pipe strength. With a view of providing a holistic measure of material performance in service, the fatigue properties of the pipe steel are investigated. The variation in the fatigue crack growth rate (da/dN) along the direction of the pipe wall thickness is studied in relation to the microstructure and the material constants for the crack growth have been reported. A combination of imaging and composition analysis is incorporated to study the fracture surface of the fatigue specimen. Finally, some well-known statistical inference models are employed for prediction of manufacturing process parameters for steel pipelines. The adaptability of the small datasets for the accuracy of the prediction outcomes is discussed and the models are compared for their performance.
ContributorsDahire, Sonam (Author) / Liu, Yongming (Thesis advisor) / Jiao, Yang (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2018
156953-Thumbnail Image.png
Description
Advanced material systems refer to materials that are comprised of multiple traditional constituents but complex microstructure morphologies, which lead to their superior properties over conventional materials. This dissertation is motivated by the grand challenge in accelerating the design of advanced material systems through systematic optimization with respect to material microstructures

Advanced material systems refer to materials that are comprised of multiple traditional constituents but complex microstructure morphologies, which lead to their superior properties over conventional materials. This dissertation is motivated by the grand challenge in accelerating the design of advanced material systems through systematic optimization with respect to material microstructures or processing settings. While optimization techniques have mature applications to a large range of engineering systems, their application to material design meets unique challenges due to the high dimensionality of microstructures and the high costs in computing process-structure-property (PSP) mappings. The key to addressing these challenges is the learning of material representations and predictive PSP mappings while managing a small data acquisition budget. This dissertation thus focuses on developing learning mechanisms that leverage context-specific meta-data and physics-based theories. Two research tasks will be conducted: In the first, we develop a statistical generative model that learns to characterize high-dimensional microstructure samples using low-dimensional features. We improve the data efficiency of a variational autoencoder by introducing a morphology loss to the training. We demonstrate that the resultant microstructure generator is morphology-aware when trained on a small set of material samples, and can effectively constrain the microstructure space during material design. In the second task, we investigate an active learning mechanism where new samples are acquired based on their violation to a theory-driven constraint on the physics-based model. We demonstrate using a topology optimization case that while data acquisition through the physics-based model is often expensive (e.g., obtaining microstructures through simulation or optimization processes), the evaluation of the constraint can be far more affordable (e.g., checking whether a solution is optimal or equilibrium). We show that this theory-driven learning algorithm can lead to much improved learning efficiency and generalization performance when such constraints can be derived. The outcomes of this research is a better understanding of how physics knowledge about material systems can be integrated into machine learning frameworks, in order to achieve more cost-effective and reliable learning of material representations and predictive models, which are essential to accelerate computational material design.
ContributorsCang, Ruijin (Author) / Ren, Yi (Thesis advisor) / Liu, Yongming (Committee member) / Jiao, Yang (Committee member) / Nian, Qiong (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2018
136455-Thumbnail Image.png
Description
Although wind turbine bearings are designed to operate 18-20 years, in the recent years premature failure among these bearings has caused this life to reduce to as low as a few months to a year. One of the leading causes of premature failure called white structure flaking is a mechanism

Although wind turbine bearings are designed to operate 18-20 years, in the recent years premature failure among these bearings has caused this life to reduce to as low as a few months to a year. One of the leading causes of premature failure called white structure flaking is a mechanism that was first cited in literature decades ago but not much is understood about it even today. The cause of this mode of failure results from the initiation of white etched cracks (WECs). In this report, different failure mechanisms, especially premature failure mechanisms that were tested and analyzed are demonstrated as a pathway to understanding this phenomenon. Through the use of various tribometers, samples were tested in diverse and extreme conditions in order to study the effect of these different operational conditions on the specimen. Analysis of the tested samples allowed for a comparison of the microstructure alterations in the tested samples to the field bearings affected by WSF.
ContributorsSharma, Aman (Author) / Foy, Joseph (Thesis director) / Adams, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136442-Thumbnail Image.png
Description
A model has been developed to modify Euler-Bernoulli beam theory for wooden beams, using visible properties of wood knot-defects. Treating knots in a beam as a system of two ellipses that change the local bending stiffness has been shown to improve the fit of a theoretical beam displacement function to

A model has been developed to modify Euler-Bernoulli beam theory for wooden beams, using visible properties of wood knot-defects. Treating knots in a beam as a system of two ellipses that change the local bending stiffness has been shown to improve the fit of a theoretical beam displacement function to edge-line deflection data extracted from digital imagery of experimentally loaded beams. In addition, an Ellipse Logistic Model (ELM) has been proposed, using L1-regularized logistic regression, to predict the impact of a knot on the displacement of a beam. By classifying a knot as severely positive or negative, vs. mildly positive or negative, ELM can classify knots that lead to large changes to beam deflection, while not over-emphasizing knots that may not be a problem. Using ELM with a regression-fit Young's Modulus on three-point bending of Douglass Fir, it is possible estimate the effects a knot will have on the shape of the resulting displacement curve.
Created2015-05
136339-Thumbnail Image.png
Description
The following is a report that will evaluate the microstructure of the nickel-based superalloy Hastelloy X and its relationship to mechanical properties in different load conditions. Hastelloy X is of interest to the company AORA because its strength and oxidation resistance at high temperatures is directly applicable to their needs

The following is a report that will evaluate the microstructure of the nickel-based superalloy Hastelloy X and its relationship to mechanical properties in different load conditions. Hastelloy X is of interest to the company AORA because its strength and oxidation resistance at high temperatures is directly applicable to their needs in a hybrid concentrated solar module. The literature review shows that the microstructure will produce different carbides at various temperatures, which can be beneficial to the strength of the alloy. These precipitates are found along the grain boundaries and act as pins that limit dislocation flow, as well as grain boundary sliding, and improve the rupture strength of the material. Over time, harmful precipitates form which counteract the strengthening effect of the carbides and reduce rupture strength, leading to failure. A combination of indentation and microstructure mapping was used in an effort to link local mechanical behavior to microstructure variability. Electron backscatter diffraction (EBSD) and energy dispersive spectroscopy (EDS) were initially used as a means to characterize the microstructure prior to testing. Then, a series of room temperature Vickers hardness tests at 50 and 500 gram-force were used to evaluate the variation in the local response as a function of indentation size. The room temperature study concluded that both the hardness and standard deviation increased at lower loads, which is consistent with the grain size distribution seen in the microstructure scan. The material was then subjected to high temperature spherical indentation. Load-displacement curves were essential in evaluating the decrease in strength of the material with increasing temperature. Through linear regression of the unloading portion of the curve, the plastic deformation was determined and compared at different temperatures as a qualitative method to evaluate local strength.
ContributorsCelaya, Andrew Jose (Author) / Peralta, Pedro (Thesis director) / Solanki, Kiran (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
133654-Thumbnail Image.png
Description
Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V, at the sub-cycle scale, or within a single loading cycle.

Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V, at the sub-cycle scale, or within a single loading cycle. Using scanning electron microscopy (SEM), imaging analysis is performed to observe crack behavior at ten loading steps throughout the loading and unloading paths. Analysis involves measuring the incremental crack growth and crack tip opening displacement (CTOD) of specimens at loading ratios of 0.1, 0.3, and 0.5. This report defines the relationship between crack growth and the stress intensity factor, K, of the specimens, as well as the relationship between the R-ratio and stress opening level. The crack closure phenomena and effect of microcracks are discussed as they influence the crack growth behavior. This method has previously been used to characterize crack growth in Al 7075-T6. The results for Ti-6Al-4V are compared to these previous findings in order to strengthen conclusions about crack growth behavior.
ContributorsNazareno, Alyssa Noelle (Author) / Liu, Yongming (Thesis director) / Jiao, Yang (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
155229-Thumbnail Image.png
Description
An accurate knowledge of the complex microstructure of a heterogeneous material is crucial for quantitative structure-property relations establishment and its performance prediction and optimization. X-ray tomography has provided a non-destructive means for microstructure characterization in both 3D and 4D (i.e., structural evolution over time). Traditional reconstruction algorithms like filtered-back-projection (FBP)

An accurate knowledge of the complex microstructure of a heterogeneous material is crucial for quantitative structure-property relations establishment and its performance prediction and optimization. X-ray tomography has provided a non-destructive means for microstructure characterization in both 3D and 4D (i.e., structural evolution over time). Traditional reconstruction algorithms like filtered-back-projection (FBP) method or algebraic reconstruction techniques (ART) require huge number of tomographic projections and segmentation process before conducting microstructural quantification. This can be quite time consuming and computationally intensive.

In this thesis, a novel procedure is first presented that allows one to directly extract key structural information in forms of spatial correlation functions from limited x-ray tomography data. The key component of the procedure is the computation of a “probability map”, which provides the probability of an arbitrary point in the material system belonging to specific phase. The correlation functions of interest are then readily computed from the probability map. Using effective medium theory, accurate predictions of physical properties (e.g., elastic moduli) can be obtained.

Secondly, a stochastic optimization procedure that enables one to accurately reconstruct material microstructure from a small number of x-ray tomographic projections (e.g., 20 - 40) is presented. Moreover, a stochastic procedure for multi-modal data fusion is proposed, where both X-ray projections and correlation functions computed from limited 2D optical images are fused to accurately reconstruct complex heterogeneous materials in 3D. This multi-modal reconstruction algorithm is proved to be able to integrate the complementary data to perform an excellent optimization procedure, which indicates its high efficiency in using limited structural information.

Finally, the accuracy of the stochastic reconstruction procedure using limited X-ray projection data is ascertained by analyzing the microstructural degeneracy and the roughness of energy landscape associated with different number of projections. Ground-state degeneracy of a microstructure is found to decrease with increasing number of projections, which indicates a higher probability that the reconstructed configurations match the actual microstructure. The roughness of energy landscape can also provide information about the complexity and convergence behavior of the reconstruction for given microstructures and projection number.
ContributorsLi, Hechao (Author) / Jiao, Yang (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Liu, Yongming (Committee member) / Ren, Yi (Committee member) / Mu, Bin (Committee member) / Arizona State University (Publisher)
Created2017
135315-Thumbnail Image.png
Description
The goal of this research is to compare the mechanical properties of CP-Ti and Ti-O and to understand the relationship between a material's microstructure and its response to fatigue. Titanium has been selected due to its desirable properties and applicability in several engineering fields. Both samples are polished and etched

The goal of this research is to compare the mechanical properties of CP-Ti and Ti-O and to understand the relationship between a material's microstructure and its response to fatigue. Titanium has been selected due to its desirable properties and applicability in several engineering fields. Both samples are polished and etched in order to visualize and characterize the microstructure and its features. The samples then undergo strain-controlled fatigue tests for several thousand cycles. Throughout testing, images of the samples are taken at zero and maximum load for DIC analysis. The DIC results can be used to study the local strains of the samples. The DIC analysis performed on the CP-Ti sample and presented in this study will be used to understand how the addition of oxygen in the Ti-O impacts fatigue response. The outcome of this research can be used to develop long-lasting, high strength materials.
ContributorsRiley, Erin Ashland (Author) / Solanki, Kiran (Thesis director) / Oswald, Jay (Committee member) / School of Art (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Perovskite films are the future of solar cell technology as they are not only low cost to produce and lightweight but also have a 26% conversion efficiency. This is extremely close to the standard silicon solar cell. The key challenge limiting the commercialization potential of these films is their fragility

Perovskite films are the future of solar cell technology as they are not only low cost to produce and lightweight but also have a 26% conversion efficiency. This is extremely close to the standard silicon solar cell. The key challenge limiting the commercialization potential of these films is their fragility and durability to outdoors conditions. This project investigates the mechanical and material properties of these perovskite materials in order to understand their future manufacturing capabilities. Through the use of a spin coater, blade coater, and a double cantilever beam testing set up, the fracture energy (or toughness), Gc, of Perovskite films is determined. Understanding the properties of these films can help manufacturers determine how to best make durable films that can be used in everyday energy generation. Furthermore, this study offers strategies to improve the fracture energy of these films by adding polymers and food-additive starches to the recipe. The findings collected in this project present a technique to study the mechanical properties of perovskite-based solar technology and films and further aid the technology to become commercially viable.
ContributorsBakshi, Kayshavi (Author) / Rolston, Nicholas (Thesis director) / Li, Muzhi (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-12
161328-Thumbnail Image.png
Description
How to effectively and accurately describe, character and quantify the microstructure of the heterogeneous material and its 4D evolution process with time suffered from external stimuli or provocations is very difficult and challenging, but it’s significant and crucial for its performance prediction, processing, optimization and design. The goal of this

How to effectively and accurately describe, character and quantify the microstructure of the heterogeneous material and its 4D evolution process with time suffered from external stimuli or provocations is very difficult and challenging, but it’s significant and crucial for its performance prediction, processing, optimization and design. The goal of this research is to overcome these challenges by developing a series of novel hierarchical statistical microstructure descriptors called “n-point polytope functions” which is as known as Pn functions to quantify heterogeneous material’s microstructure and creating Pn functions related quantification methods which are Omega Metric and Differential Omega Metric to analyze its 4D processing.In this dissertation, a series of powerful programming tools are used to demonstrate that Pn functions can be used up to n=8 for chaotically scattered images which can hardly be distinguished by our naked eyes in chapter 3 to find or compare the potential configuration feature of structure such as symmetry or polygon geometry relation between the different targets when target’s multi-modal imaging is provided. These n-point statistic results calculated from Pn functions for features of interest in the microstructure can efficiently decompose the structural hidden features into a set of “polytope basis” to provide a concise, explainable, expressive, universal and efficient quantifying manner. In Chapter 4, the Pn functions can also be incorporated into material reconstruction algorithms readily for fast virtualizing 3D microstructure regeneration and also allowing instant material property prediction via analytical structure-property mappings for material design. In Chapter 5, Omega Metric and Differential Omega Metric are further created and used to provide a time-dependent reduced-dimension metric to analyze the 4D evaluation processing instead of using Pn functions directly because these 2 simplified methods can provide undistorted results to be easily compared. The real case of vapor-deposition alloy films analysis are implemented in this dissertation to demonstrate that One can use these methods to predict or optimize the design for 4D evolution of heterogeneous material. The advantages of the all quantification methods in this dissertation can let us economically and efficiently quantify, design, predict the microstructure and 4D evolution of the heterogeneous material in various fields.
ContributorsCHEN, PEI-EN (Author) / Jiao, Yang (Thesis advisor) / Ren, Yi (Thesis advisor) / Liu, Yongming (Committee member) / Zhuang, Houlong (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2021