Matching Items (10)
Filtering by

Clear all filters

151513-Thumbnail Image.png
Description
Ball Grid Array (BGA) using lead-free or lead-rich solder materials are widely used as Second Level Interconnects (SLI) in mounting packaged components to the printed circuit board (PCB). The reliability of these solder joints is of significant importance to the performance of microelectronics components and systems. Product design/form-factor, solder material,

Ball Grid Array (BGA) using lead-free or lead-rich solder materials are widely used as Second Level Interconnects (SLI) in mounting packaged components to the printed circuit board (PCB). The reliability of these solder joints is of significant importance to the performance of microelectronics components and systems. Product design/form-factor, solder material, manufacturing process, use condition, as well as, the inherent variabilities present in the system, greatly influence product reliability. Accurate reliability analysis requires an integrated approach to concurrently account for all these factors and their synergistic effects. Such an integrated and robust methodology can be used in design and development of new and advanced microelectronics systems and can provide significant improvement in cycle-time, cost, and reliability. IMPRPK approach is based on a probabilistic methodology, focusing on three major tasks of (1) Characterization of BGA solder joints to identify failure mechanisms and obtain statistical data, (2) Finite Element analysis (FEM) to predict system response needed for life prediction, and (3) development of a probabilistic methodology to predict the reliability, as well as, the sensitivity of the system to various parameters and the variabilities. These tasks and the predictive capabilities of IMPRPK in microelectronic reliability analysis are discussed.
ContributorsFallah-Adl, Ali (Author) / Tasooji, Amaneh (Thesis advisor) / Krause, Stephen (Committee member) / Alford, Terry (Committee member) / Jiang, Hanqing (Committee member) / Mahajan, Ravi (Committee member) / Arizona State University (Publisher)
Created2013
150025-Thumbnail Image.png
Description
With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is

With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is lacking. Reliable experimental and numerical analysis of lead-free solder joints in the intermediate strain rate regime need to be investigated. This dissertation mainly focuses on exploring the mechanical shock behavior of lead-free tin-rich solder alloys via multiscale modeling and numerical simulations. First, the macroscopic stress/strain behaviors of three bulk lead-free tin-rich solders were tested over a range of strain rates from 0.001/s to 30/s. Finite element analysis was conducted to determine appropriate specimen geometry that could reach a homogeneous stress/strain field and a relatively high strain rate. A novel self-consistent true stress correction method is developed to compensate the inaccuracy caused by the triaxial stress state at the post-necking stage. Then the material property of micron-scale intermetallic was examined by micro-compression test. The accuracy of this measure is systematically validated by finite element analysis, and empirical adjustments are provided. Moreover, the interfacial property of the solder/intermetallic interface is investigated, and a continuum traction-separation law of this interface is developed from an atomistic-based cohesive element method. The macroscopic stress/strain relation and microstructural properties are combined together to form a multiscale material behavior via a stochastic approach for both solder and intermetallic. As a result, solder is modeled by porous plasticity with random voids, and intermetallic is characterized as brittle material with random vulnerable region. Thereafter, the porous plasticity fracture of the solders and the brittle fracture of the intermetallics are coupled together in one finite element model. Finally, this study yields a multiscale model to understand and predict the mechanical shock behavior of lead-free tin-rich solder joints. Different fracture patterns are observed for various strain rates and/or intermetallic thicknesses. The predictions have a good agreement with the theory and experiments.
ContributorsFei, Huiyang (Author) / Jiang, Hanqing (Thesis advisor) / Chawla, Nikhilesh (Thesis advisor) / Tasooji, Amaneh (Committee member) / Mobasher, Barzin (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2011
150926-Thumbnail Image.png
Description
This thesis discusses the evolution of conduction mechanism in the silver (Ag) on zinc oxide (ZnO) thin film system with respect to the Ag morphology. As a plausible substitute for indium tin oxide (ITO), TCO/Metal/TCO (TMT) structure has received a lot of attentions as a prospective ITO substitute due to

This thesis discusses the evolution of conduction mechanism in the silver (Ag) on zinc oxide (ZnO) thin film system with respect to the Ag morphology. As a plausible substitute for indium tin oxide (ITO), TCO/Metal/TCO (TMT) structure has received a lot of attentions as a prospective ITO substitute due to its low resistivity and desirable transmittance. However, the detailed conduction mechanism is not fully understood. In an attempt to investigate the conduction mechanism of the ZnO/Ag/ZnO thin film system with respect to the Ag microstructure, the top ZnO layer is removed, which offers a better view of Ag morphology by using scanning electron microscopy (SEM). With 2 nm thick Ag layer, it is seen that the Ag forms discrete islands with small islands size (r), but large separation (s); also the effective resistivity of the system is extremely high. This regime is designated as dielectric zone. In this regime, thermionic emission and activated tunneling conduction mechanisms are considered. Based on simulations, when "s" was beyond 6 nm, thermionic emission dominates; with "s" less than 6 nm, activated tunneling is the dominating mechanism. As the Ag thickness increases, the individual islands coalesce and Ag clusters are formed. At certain Ag thickness, there are one or several Ag clusters that percolate the ZnO film, and the effective resistivity of the system exhibits a tremendous drop simultaneously, because the conducting electrons do not need to overcome huge ZnO barrier to transport. This is recognized as percolation zone. As the Ag thickness grows, Ag film becomes more continuous and there are no individual islands left on the surface. The effective resistivity decreases and is comparable to the characteristics of metallic materials, so this regime is categorized as metallic zone. The simulation of the Ag thin film resistivity is performed in terms of Ag thickness, and the experimental data fits the simulation well, which supports the proposed models. Hall measurement and four point probe measurement are carried out to characterize the electrical properties of the thin film system.
ContributorsZhang, Shengke (Author) / Alford, Terry L. (Thesis advisor) / Schroder, Dieter K. (Committee member) / Tasooji, Amaneh (Committee member) / Arizona State University (Publisher)
Created2012
151202-Thumbnail Image.png
Description
This thesis elaborates the application of carbon nanotubes (CNTs) and it is discussed in two parts. In the first part of the thesis, two types of CNTs inks for inkjet materials printer are prepared. They are both chemical stable and printable, effective and easily made. The sheet resistance of printed

This thesis elaborates the application of carbon nanotubes (CNTs) and it is discussed in two parts. In the first part of the thesis, two types of CNTs inks for inkjet materials printer are prepared. They are both chemical stable and printable, effective and easily made. The sheet resistance of printed films decreases exponentially as the number of layers increases. In the second part of this study, CNTs/ZnO composite structures are fabricated to understand the electronic and optical properties. The materials were deposited by two different methods: drop-drying and RF magnetic sputtering system on flexible polymer substrates. To further increase the conductivity of the various layers of deposited CNTs films, electrical and optical characterizations are also done. This study establishes CNTs as a multi-functional semitransparent conductor, which can be deposited at room-temperature with other transparent conductive oxide (TCO) composites for application in flexible electronics and printed circuit and sensors.
ContributorsLiu, Pai (Author) / Alford, Terry L. (Thesis advisor) / Tasooji, Amaneh (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
154078-Thumbnail Image.png
Description
Photovoltaic (PV) module degradation is a well-known issue, however understanding the mechanistic pathways in which modules degrade is still a major task for the PV industry. In order to study the mechanisms responsible for PV module degradation, the effects of these degradation mechanisms must be quantitatively measured to determine the

Photovoltaic (PV) module degradation is a well-known issue, however understanding the mechanistic pathways in which modules degrade is still a major task for the PV industry. In order to study the mechanisms responsible for PV module degradation, the effects of these degradation mechanisms must be quantitatively measured to determine the severity of each degradation mode. In this thesis multiple modules from three climate zones (Arizona, California and Colorado) were investigated for a single module glass/polymer construction (Siemens M55) to determine the degree to which they had degraded, and the main factors that contributed to that degradation. To explain the loss in power, various nondestructive and destructive techniques were used to indicate possible causes of loss in performance. This is a two-part thesis. Part 1 presents non-destructive test results and analysis and Part 2 presents destructive test results and analysis.
ContributorsChicca, Matthew (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2015
156155-Thumbnail Image.png
Description
This work demonstrates a capable reverse pulse deposition methodology to influence gap fill behavior inside microvia along with a uniform deposit in the fine line patterned regions for substrate packaging applications. Interconnect circuitry in IC substrate packages comprises of stacked microvia that varies in depth from 20µm to 100µm with

This work demonstrates a capable reverse pulse deposition methodology to influence gap fill behavior inside microvia along with a uniform deposit in the fine line patterned regions for substrate packaging applications. Interconnect circuitry in IC substrate packages comprises of stacked microvia that varies in depth from 20µm to 100µm with an aspect ratio of 0.5 to 1.5 and fine line patterns defined by photolithography. Photolithography defined pattern regions incorporate a wide variety of feature sizes including large circular pad structures with diameter of 20µm - 200µm, fine traces with varying widths of 3µm - 30µm and additional planar regions to define a IC substrate package. Electrodeposition of copper is performed to establish the desired circuit. Electrodeposition of copper in IC substrate applications holds certain unique challenges in that they require a low cost manufacturing process that enables a void-free gap fill inside the microvia along with uniform deposition of copper on exposed patterned regions. Deposition time scales to establish the desired metal thickness for such packages could range from several minutes to few hours. This work showcases a reverse pulse electrodeposition methodology that achieves void-free gap fill inside the microvia and uniform plating in FLS (Fine Lines and Spaces) regions with significantly higher deposition rates than traditional approaches. In order to achieve this capability, systematic experimental and simulation studies were performed. A strong correlation of independent parameters that govern the electrodeposition process such as bath temperature, reverse pulse plating parameters and the ratio of electrolyte concentrations is shown to the deposition kinetics and deposition uniformity in fine patterned regions and gap fill rate inside the microvia. Additionally, insight into the physics of via fill process is presented with secondary and tertiary current simulation efforts. Such efforts lead to show “smart” control of deposition rate at the top and bottom of via to avoid void formation. Finally, a parametric effect on grain size and the ensuing copper metallurgical characteristics of bulk copper is also shown to enable high reliability substrate packages for the IC packaging industry.
ContributorsGanesan, Kousik (Author) / Tasooji, Amaneh (Thesis advisor) / Manepalli, Rahul (Committee member) / Alford, Terry (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2018
154956-Thumbnail Image.png
Description
As the photovoltaic (PV) power plants age in the field, the PV modules degrade and generate visible and invisible defects. A defect and statistical degradation rate analysis of photovoltaic (PV) power plants is presented in two-part thesis. The first part of the thesis deals with the defect analysis and the

As the photovoltaic (PV) power plants age in the field, the PV modules degrade and generate visible and invisible defects. A defect and statistical degradation rate analysis of photovoltaic (PV) power plants is presented in two-part thesis. The first part of the thesis deals with the defect analysis and the second part of the thesis deals with the statistical degradation rate analysis. In the first part, a detailed analysis on the performance or financial risk related to each defect found in multiple PV power plants across various climatic regions of the USA is presented by assigning a risk priority number (RPN). The RPN for all the defects in each PV plant is determined based on two databases: degradation rate database; defect rate database. In this analysis it is determined that the RPN for each plant is dictated by the technology type (crystalline silicon or thin-film), climate and age. The PV modules aging between 3 and 19 years in four different climates of hot-dry, hot-humid, cold-dry and temperate are investigated in this study.

In the second part, a statistical degradation analysis is performed to determine if the degradation rates are linear or not in the power plants exposed in a hot-dry climate for the crystalline silicon technologies. This linearity degradation analysis is performed using the data obtained through two methods: current-voltage method; metered kWh method. For the current-voltage method, the annual power degradation data of hundreds of individual modules in six crystalline silicon power plants of different ages is used. For the metered kWh method, a residual plot analysis using Winters’ statistical method is performed for two crystalline silicon plants of different ages. The metered kWh data typically consists of the signal and noise components. Smoothers remove the noise component from the data by taking the average of the current and the previous observations. Once this is done, a residual plot analysis of the error component is performed to determine the noise was successfully separated from the data by proving the noise is random.
ContributorsSundarajan, Prasanna (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2016
155242-Thumbnail Image.png
Description
The microstructure development of Inconel alloy 718 (IN718) during conventional processing has been extensively studied and much has been discovered as to the mechanisms behind the exceptional creep resistance that the alloy exhibits. More recently with the development of large scale 3D printing of alloys such as IN718 a new

The microstructure development of Inconel alloy 718 (IN718) during conventional processing has been extensively studied and much has been discovered as to the mechanisms behind the exceptional creep resistance that the alloy exhibits. More recently with the development of large scale 3D printing of alloys such as IN718 a new dimension of complexity has emerged in the understanding of alloy microstructure development, hence, potential alloy development opportunity for IN718.

This study is a broad stroke at discovering possible alternate microstructures developing in Direct-Metal-Laser-Sintering (DMLS) processed IN718 compared to those in conventional wrought IN718. The main inspiration for this study came from creep test results from several DMLS IN718 samples at Honeywell that showed a significant

improvement in creep capabilities for DMLS718 compared to cast and wrought IN718 (Honeywell).

From this data the steady-state creep rates were evaluated and fitted to current creep models in order to identify active creep mechanisms in conventional and DMLS IN718 and illuminate the potential factors responsible for the improved creep behavior in DMSL processed IN718.

Because rapid heating and cooling can introduce high internal stress and impact microstructural development, such as gamma double prime formations (Oblak et al.), leading to differences in material behavior, DMLS and conventional IN718 materials are studied using SEM and TEM characterization to investigate sub-micron and/or nano-scale

microstructural differences developed in the DMLS samples as a result of their complex thermal history and internal stress.

The preliminary analysis presented in this body of work is an attempt to better understand the effect of DMLS processing in quest for development of optimization techniques for DMLS as a whole. A historical sketch of nickel alloys and the development of IN718 is given. A literature review detailing the microstructure of IN718 is presented. Creep data analysis and identification of active creep mechanisms are evaluated. High-resolution microstructural characterization of DMLS and wrought IN718 are discussed in detail throughout various chapters of this thesis. Finally, an initial effort in developing a processing model that would allow for parameter optimization is presented.
ContributorsRogers, Blake Kenton (Author) / Tasooji, Amaneh (Thesis advisor) / Petuskey, William (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2017
158250-Thumbnail Image.png
Description
Electrostatic Discharge (ESD) is a unique issue in the electronics industry that can cause failures of electrical components and complete electronic systems. There is an entire industry that is focused on developing ESD compliant tooling using traditional manufacturing methods. This research work evaluates the feasibility to fabricate a

Electrostatic Discharge (ESD) is a unique issue in the electronics industry that can cause failures of electrical components and complete electronic systems. There is an entire industry that is focused on developing ESD compliant tooling using traditional manufacturing methods. This research work evaluates the feasibility to fabricate a PEEK-Carbon Nanotube composite filament for Fused Filament Fabrication (FFF) Additive Manufacturing that is ESD compliant. In addition, it demonstrates that the FFF process can be used to print tools with the required accuracy, ESD compliance and mechanical properties necessary for the electronics industry at a low rate production level. Current Additive Manufacturing technology can print high temperature polymers, such as PEEK, with the required mechanical properties but they are not ESD compliant and require post processing to create a product that is. There has been some research conducted using mixed multi-wall and single wall carbon nanotubes in a PEEK polymers, which improves mechanical properties while reducing bulk resistance to the levels required to be ESD compliant. This previous research has been used to develop a PEEK-CNT polymer matrix for the Fused Filament Fabrication additive manufacturing process
ContributorsChurchwell, Raymond L (Author) / Sugar, Thomas (Thesis advisor) / Rogers, Bradley (Committee member) / Morrell, Darryl (Committee member) / Arizona State University (Publisher)
Created2020
154238-Thumbnail Image.png
Description
ABSTRACT



Large-pore metal-organic framework (MOF) membranes offer potential in a number of gas and liquid separations due to their wide and selective adsorption capacities. A key characteristic of a number of MOF and zeolitic imidazolate framework (ZIF) membranes is their highly selective adsorption capacities for CO2.

ABSTRACT



Large-pore metal-organic framework (MOF) membranes offer potential in a number of gas and liquid separations due to their wide and selective adsorption capacities. A key characteristic of a number of MOF and zeolitic imidazolate framework (ZIF) membranes is their highly selective adsorption capacities for CO2. These membranes offer very tangible potential to separate CO2 in a wide array of industrially relevant separation processes, such as the separation from CO2 in flue gas emissions, as well as the sweetening of methane.

By virtue of this, the purpose of this dissertation is to synthesize and characterize two linear large-pore MOF membranes, MOF-5 and ZIF-68, and to study their gas separation properties in binary mixtures of CO¬2/N2 and CO2/CH4. The three main objectives researched are as follows. The first is to study the pervaporation behavior and stability of MOF-5; this is imperative because although MOF-5 exhibits desirable adsorption and separation characteristics, it is very unstable in atmospheric conditions. In determining its stability and behavior in pervaporation, this material can be utilized in conditions wherein atmospheric levels of moisture can be avoided. The second objective is to synthesize, optimize and characterize a linear, more stable MOF membrane, ZIF-68. The final objective is to study in tandem the high-pressure gas separation behavior of MOF-5 and ZIF-68 in binary gas systems of both CO2/N2 and CO2/CH4.

Continuous ZIF-68 membranes were synthesized via the reactive seeding method and the modified reactive seeding method. These membranes, as with the MOF-5 membranes synthesized herein, both showed adherence to Knudsen diffusion, indicating limited defects. Organic solvent experiments indicated that MOF-5 and ZIF-68 were stable in a variety of organic solvents, but both showed reductions in permeation flux of the tested molecules. These reductions were attributed to fouling and found to be cumulative up until a saturation of available bonding sites for molecules was reached and stable pervaporation permeances were reached for both. Gas separation behavior for MOF-5 showed direct dependence on the CO2 partial pressure and the overall feed pressure, while ZIF-68 did not show similar behavior. Differences in separation behavior are attributable to orientation of the ZIF-68 membranes.
ContributorsKasik, Alexandra Marie (Author) / Lin, Jerry (Thesis advisor) / Tasooji, Amaneh (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2015