Matching Items (95)
Filtering by

Clear all filters

150025-Thumbnail Image.png
Description
With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is

With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is lacking. Reliable experimental and numerical analysis of lead-free solder joints in the intermediate strain rate regime need to be investigated. This dissertation mainly focuses on exploring the mechanical shock behavior of lead-free tin-rich solder alloys via multiscale modeling and numerical simulations. First, the macroscopic stress/strain behaviors of three bulk lead-free tin-rich solders were tested over a range of strain rates from 0.001/s to 30/s. Finite element analysis was conducted to determine appropriate specimen geometry that could reach a homogeneous stress/strain field and a relatively high strain rate. A novel self-consistent true stress correction method is developed to compensate the inaccuracy caused by the triaxial stress state at the post-necking stage. Then the material property of micron-scale intermetallic was examined by micro-compression test. The accuracy of this measure is systematically validated by finite element analysis, and empirical adjustments are provided. Moreover, the interfacial property of the solder/intermetallic interface is investigated, and a continuum traction-separation law of this interface is developed from an atomistic-based cohesive element method. The macroscopic stress/strain relation and microstructural properties are combined together to form a multiscale material behavior via a stochastic approach for both solder and intermetallic. As a result, solder is modeled by porous plasticity with random voids, and intermetallic is characterized as brittle material with random vulnerable region. Thereafter, the porous plasticity fracture of the solders and the brittle fracture of the intermetallics are coupled together in one finite element model. Finally, this study yields a multiscale model to understand and predict the mechanical shock behavior of lead-free tin-rich solder joints. Different fracture patterns are observed for various strain rates and/or intermetallic thicknesses. The predictions have a good agreement with the theory and experiments.
ContributorsFei, Huiyang (Author) / Jiang, Hanqing (Thesis advisor) / Chawla, Nikhilesh (Thesis advisor) / Tasooji, Amaneh (Committee member) / Mobasher, Barzin (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2011
149945-Thumbnail Image.png
Description
Increasing demand for high strength powder metallurgy (PM) steels has resulted in the development of dual phase PM steels. In this work, the effects of thermal aging on the microstructure and mechanical behavior of dual phase precipitation hardened powder metallurgy (PM) stainless steels of varying ferrite-martensite content were examined. Quantitative

Increasing demand for high strength powder metallurgy (PM) steels has resulted in the development of dual phase PM steels. In this work, the effects of thermal aging on the microstructure and mechanical behavior of dual phase precipitation hardened powder metallurgy (PM) stainless steels of varying ferrite-martensite content were examined. Quantitative analyses of the inherent porosity and phase fractions were conducted on the steels and no significant differences were noted with respect to aging temperature. Tensile strength, yield strength, and elongation to fracture all increased with increasing aging temperature reaching maxima at 538oC in most cases. Increased strength and decreased ductility were observed in steels of higher martensite content. Nanoindentation of the individual microconstituents was employed to obtain a fundamental understanding of the strengthening contributions. Both the ferrite and martensite hardness values increased with aging temperature and exhibited similar maxima to the bulk tensile properties. Due to the complex non-uniform stresses and strains associated with conventional nanoindentation, micropillar compression has become an attractive method to probe local mechanical behavior while limiting strain gradients and contributions from surrounding features. In this study, micropillars of ferrite and martensite were fabricated by focused ion beam (FIB) milling of dual phase precipitation hardened powder metallurgy (PM) stainless steels. Compression testing was conducted using a nanoindenter equipped with a flat punch indenter. The stress-strain curves of the individual microconstituents were calculated from the load-displacement curves less the extraneous displacements of the system. Using a rule of mixtures approach in conjunction with porosity corrections, the mechanical properties of ferrite and martensite were combined for comparison to tensile tests of the bulk material, and reasonable agreement was found for the ultimate tensile strength. Micropillar compression experiments of both as sintered and thermally aged material allowed for investigation of the effect of thermal aging.
ContributorsStewart, Jennifer (Author) / Chawla, Nikhilesh (Thesis advisor) / Jiang, Hanqing (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
150255-Thumbnail Image.png
Description
Thin films of ever reducing thickness are used in a plethora of applications and their performance is highly dependent on their microstructure. Computer simulations could then play a vital role in predicting the microstructure of thin films as a function of processing conditions. FACET is one such software tool designed

Thin films of ever reducing thickness are used in a plethora of applications and their performance is highly dependent on their microstructure. Computer simulations could then play a vital role in predicting the microstructure of thin films as a function of processing conditions. FACET is one such software tool designed by our research group to model polycrystalline thin film growth, including texture evolution and grain growth of polycrystalline films in 2D. Several modifications to the original FACET code were done to enhance its usability and accuracy. Simulations of sputtered silver thin films are presented here with FACET 2.0 with qualitative and semi-quantitative comparisons with previously published experimental results. Comparisons of grain size, texture and film thickness between simulations and experiments are presented which describe growth modes due to various deposition factors like flux angle and substrate temperature. These simulations provide reasonable agreement with the experimental data over a diverse range of process parameters. Preliminary experiments in depositions of Silver films are also attempted with varying substrates and thickness in order to generate complementary experimental and simulation studies of microstructure evolution. Overall, based on the comparisons, FACET provides interesting insights into thin film growth processes, and the effects of various deposition conditions on thin film structure and microstructure. Lastly, simple molecular dynamics simulations of deposition on bi-crystals are attempted for gaining insight into texture based grain competition during film growth. These simulations predict texture based grain coarsening mechanisms like twinning and grain boundary migration that have been commonly reported in FCC films.
ContributorsRairkar, Asit (Author) / Adams, James B (Thesis advisor) / Krause, Stephen (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2011
151596-Thumbnail Image.png
Description
Carrier lifetime is one of the few parameters which can give information about the low defect densities in today's semiconductors. In principle there is no lower limit to the defect density determined by lifetime measurements. No other technique can easily detect defect densities as low as 10-9 - 10-10 cm-3

Carrier lifetime is one of the few parameters which can give information about the low defect densities in today's semiconductors. In principle there is no lower limit to the defect density determined by lifetime measurements. No other technique can easily detect defect densities as low as 10-9 - 10-10 cm-3 in a simple, contactless room temperature measurement. However in practice, recombination lifetime τr measurements such as photoconductance decay (PCD) and surface photovoltage (SPV) that are widely used for characterization of bulk wafers face serious limitations when applied to thin epitaxial layers, where the layer thickness is smaller than the minority carrier diffusion length Ln. Other methods such as microwave photoconductance decay (µ-PCD), photoluminescence (PL), and frequency-dependent SPV, where the generated excess carriers are confined to the epitaxial layer width by using short excitation wavelengths, require complicated configuration and extensive surface passivation processes that make them time-consuming and not suitable for process screening purposes. Generation lifetime τg, typically measured with pulsed MOS capacitors (MOS-C) as test structures, has been shown to be an eminently suitable technique for characterization of thin epitaxial layers. It is for these reasons that the IC community, largely concerned with unipolar MOS devices, uses lifetime measurements as a "process cleanliness monitor." However when dealing with ultraclean epitaxial wafers, the classic MOS-C technique measures an effective generation lifetime τg eff which is dominated by the surface generation and hence cannot be used for screening impurity densities. I have developed a modified pulsed MOS technique for measuring generation lifetime in ultraclean thin p/p+ epitaxial layers which can be used to detect metallic impurities with densities as low as 10-10 cm-3. The widely used classic version has been shown to be unable to effectively detect such low impurity densities due to the domination of surface generation; whereas, the modified version can be used suitably as a metallic impurity density monitoring tool for such cases.
ContributorsElhami Khorasani, Arash (Author) / Alford, Terry (Thesis advisor) / Goryll, Michael (Committee member) / Bertoni, Mariana (Committee member) / Arizona State University (Publisher)
Created2013
151848-Thumbnail Image.png
Description
ABSTRACT Along with the fast development of science and technology, the studied materials are becoming more complicated and smaller. All these achievements have advanced with the fast development of powerful tools currently, such as Scanning electron microscopy (SEM), Focused Ion Beam (FIB), Transmission electron microscopy (TEM), Energy dispersive X-ray spectroscopy

ABSTRACT Along with the fast development of science and technology, the studied materials are becoming more complicated and smaller. All these achievements have advanced with the fast development of powerful tools currently, such as Scanning electron microscopy (SEM), Focused Ion Beam (FIB), Transmission electron microscopy (TEM), Energy dispersive X-ray spectroscopy (EDX), Electron energy loss spectroscopy (EELS) and so on. SiTiO3 thin film, which is grown on Si (100) single crystals, attracts a lot of interest in its structural and electronic properties close to its interface. Valence EELS is used to investigate the Plasmon excitations of the ultrathin SrTiO3 thin film which is sandwiched between amorphous Si and crystalline Si layers. On the other hand, theoretical simulations based on dielectric functions have been done to interpret the experimental results. Our findings demonstrate the value of valence electron energy-loss spectroscopy in detecting a local change in the effective electron mass. Recently it is reported that ZnO-LiYbO2 hybrid phosphor is an efficient UV-infrared convertor for silicon solar cell but the mechanism is still not very clear. The microstructure of Li and Yb co-doped ZnO has been studied by SEM and EDX, and our results suggest that a reaction (or diffusion) zone is very likely to exist between LiYbO2 and ZnO. Such diffusion regions may be responsible for the enhanced infrared emission in the Yb and Li co-doped ZnO. Furthermore, to help us study the diffusion zone under TEM in future, the radiation damage on synthesized LiYbO2 has been studied at first, and then the electronic structure of the synthesized LiYbO2 is compared with Yb2O3 experimentally and theoretically, by EELS and FEFF8 respectively.
ContributorsYang, Bo (Author) / Alford, Terry (Thesis advisor) / Jiang, Nan (Committee member) / Theodore, N. David (Committee member) / Arizona State University (Publisher)
Created2013
151513-Thumbnail Image.png
Description
Ball Grid Array (BGA) using lead-free or lead-rich solder materials are widely used as Second Level Interconnects (SLI) in mounting packaged components to the printed circuit board (PCB). The reliability of these solder joints is of significant importance to the performance of microelectronics components and systems. Product design/form-factor, solder material,

Ball Grid Array (BGA) using lead-free or lead-rich solder materials are widely used as Second Level Interconnects (SLI) in mounting packaged components to the printed circuit board (PCB). The reliability of these solder joints is of significant importance to the performance of microelectronics components and systems. Product design/form-factor, solder material, manufacturing process, use condition, as well as, the inherent variabilities present in the system, greatly influence product reliability. Accurate reliability analysis requires an integrated approach to concurrently account for all these factors and their synergistic effects. Such an integrated and robust methodology can be used in design and development of new and advanced microelectronics systems and can provide significant improvement in cycle-time, cost, and reliability. IMPRPK approach is based on a probabilistic methodology, focusing on three major tasks of (1) Characterization of BGA solder joints to identify failure mechanisms and obtain statistical data, (2) Finite Element analysis (FEM) to predict system response needed for life prediction, and (3) development of a probabilistic methodology to predict the reliability, as well as, the sensitivity of the system to various parameters and the variabilities. These tasks and the predictive capabilities of IMPRPK in microelectronic reliability analysis are discussed.
ContributorsFallah-Adl, Ali (Author) / Tasooji, Amaneh (Thesis advisor) / Krause, Stephen (Committee member) / Alford, Terry (Committee member) / Jiang, Hanqing (Committee member) / Mahajan, Ravi (Committee member) / Arizona State University (Publisher)
Created2013
152081-Thumbnail Image.png
Description
I studied the properties of novel Co2FeAl0.5Si0.5 (CFAS), ZnGeAs2, and FeS2 (pyrite) thin films for microelectronic applications ranging from spintronic to photovoltaic. CFAS is a half metal with theoretical spin polarization of 100%. I investigated its potential as a spin injector, for spintronic applications, by studying the critical steps involved

I studied the properties of novel Co2FeAl0.5Si0.5 (CFAS), ZnGeAs2, and FeS2 (pyrite) thin films for microelectronic applications ranging from spintronic to photovoltaic. CFAS is a half metal with theoretical spin polarization of 100%. I investigated its potential as a spin injector, for spintronic applications, by studying the critical steps involved in the injection of spin polarized electron populations from tunnel junctions containing CFAS electrodes. Epitaxial CFAS thin films with L21 structure and saturation magnetizations of over 1200 emu/cm3 were produced by optimization of the sputtering growth conditions. Point contact Andreev reflection measurements show that the spin polarization at the CFAS electrode surface exceeds 70%. Analyses of the electrical properties of tunnel junctions with a superconducting Pb counter-electrode indicate that transport through native Al oxide barriers is mostly from direct tunneling, while that through the native CFAS oxide barriers is not. ZnGeAs2 is a semiconductor comprised of only inexpensive and earth-abundant elements. The electronic structure and defect properties are similar in many ways to GaAs. Thus, in theory, efficient solar cells could be made with ZnGeAs2 if similar quality material to that of GaAs could be produced. To understand the thermochemistry and determine the rate limiting steps of ZnGeAs2 thin-film synthesis, the (a) thermal decomposition rate and (b) elemental composition and deposition rate of films were measured. It is concluded that the ZnGeAs2 thin film synthesis is a metastable process with an activation energy of 1.08±0.05 eV for the kinetically-limited decomposition rate and an evaporation coefficient of ~10-3. The thermochemical analysis presented here can be used to predict optimal conditions of ZnGeAs2 physical vapor deposition and thermal processing. Pyrite (FeS2) is another semiconductor that has tremendous potential for use in photovoltaic applications if high quality materials could be made. Here, I present the layer-by-layer growth of single-phase pyrite thin-films on heated substrates using sequential evaporation of Fe under high-vacuum followed by sulfidation at S pressures between 1 mTorr and 1 Torr. High-resolution transmission electron microscopy reveals high-quality, defect-free pyrite grains were produces by this method. It is demonstrated that epitaxial pyrite layer was produced on natural pyrite substrates with this method.
ContributorsVahidi, Mahmoud (Author) / Newman, Nathan (Thesis advisor) / Alford, Terry (Committee member) / Singh, Rakesh (Committee member) / Chen, Tingyong (Committee member) / Arizona State University (Publisher)
Created2013
151952-Thumbnail Image.png
Description
Microwave dielectrics are widely used to make resonators and filters in telecommunication systems. The production of thin films with high dielectric constant and low loss could potentially enable a marked reduction in the size of devices and systems. However, studies of these materials in thin film form are very sparse.

Microwave dielectrics are widely used to make resonators and filters in telecommunication systems. The production of thin films with high dielectric constant and low loss could potentially enable a marked reduction in the size of devices and systems. However, studies of these materials in thin film form are very sparse. In this research, experiments were carried out on practical high-performance dielectrics including ZrTiO4-ZnNb2O6 (ZTZN) and Ba(Co,Zn)1/3Nb2/3O3 (BCZN) with high dielectric constant and low loss tangent. Thin films were deposited by laser ablation on various substrates, with a systematical study of growth conditions like substrate temperature, oxygen pressure and annealing to optimize the film quality, and the compositional, microstructural, optical and electric properties were characterized. The deposited ZTZN films were randomly oriented polycrystalline on Si substrate and textured on MgO substrate with a tetragonal lattice change at elevated temperature. The BCZN films deposited on MgO substrate showed superior film quality relative to that on other substrates, which grow epitaxially with an orientation of (001) // MgO (001) and (100) // MgO (100) when substrate temperature was above 500 oC. In-situ annealing at growth temperature in 200 mTorr oxygen pressure was found to enhance the quality of the films, reducing the peak width of the X-ray Diffraction (XRD) rocking curve to 0.53o and the χmin of channeling Rutherford Backscattering Spectrometry (RBS) to 8.8% when grown at 800oC. Atomic Force Microscopy (AFM) was used to study the topography and found a monotonic decrease in the surface roughness when the growth temperature increased. Optical absorption and transmission measurements were used to determine the energy bandgap and the refractive index respectively. A low-frequency dielectric constant of 34 was measured using a planar interdigital measurement structure. The resistivity of the film is ~3×1010 ohm·cm at room temperature and has an activation energy of thermal activated current of 0.66 eV.
ContributorsLi, You (Author) / Newman, Nathan (Thesis advisor) / Alford, Terry (Committee member) / Singh, Rakesh (Committee member) / Arizona State University (Publisher)
Created2013
152390-Thumbnail Image.png
Description
Of the potential technologies for pre-combustion capture, membranes offer the advantages of being temperature resistant, able to handle large flow rates, and having a relatively small footprint. A significant amount of research has centered on the use of polymeric and microporous inorganic membranes to separate CO2. These membranes, however, have

Of the potential technologies for pre-combustion capture, membranes offer the advantages of being temperature resistant, able to handle large flow rates, and having a relatively small footprint. A significant amount of research has centered on the use of polymeric and microporous inorganic membranes to separate CO2. These membranes, however, have limitations at high temperature resulting in poor permeation performance. To address these limitations, the use of a dense dual-phase membrane has been studied. These membranes are composed of conductive solid and conductive liquid phases that have the ability to selectively permeate CO2 by forming carbonate ions that diffuse through the membrane at high temperature. The driving force for transport through the membrane is a CO2 partial pressure gradient. The membrane provides a theoretically infinite selectivity. To address stability of the ceramic-carbonate dual-phase membrane for CO2 capture at high temperature, the ceramic phase of the membrane was studied and replaced with materials previously shown to be stable in harsh conditions. The permeation properties and stability of La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF)-carbonate, La0.85Ce0.1Ga0.3Fe0.65Al0.05O3-δ (LCGFA)-carbonate, and Ce0.8Sm0.2O1.9 (SDC)-carbonate membranes were examined under a wide range of experimental conditions at high temperature. LSCF-carbonate membranes were shown to be unstable without the presence of O2 due to reaction of CO2 with the ceramic phase. In the presence of O2, however, the membranes showed stable permeation behavior for more than one month at 900oC. LCGFA-carbonate membranes showed great chemical and permeation stability in the presence of various conditions including exposure to CH4 and H2, however, the permeation performance was quite low when compared to membranes in the literature. Finally, SDC-carbonate membranes showed great chemical and permeation stability both in a CO2:N2 environment for more than two weeks at 900oC as well as more than one month of exposure to simulated syngas conditions at 700oC. Ceramic phase chemical stability increased in the order of LSCF < LCGFA < SDC while permeation performance increased in the order of LCGFA < LSCF < SDC.
ContributorsNorton, Tyler (Author) / Lin, Jerry Y.S. (Thesis advisor) / Alford, Terry (Committee member) / Lind, Mary Laura (Committee member) / Smith, David (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2013
150697-Thumbnail Image.png
Description
The mechanical behavior of Pb-free solder alloys is important, since they must maintain mechanical integrity under thermomechanical fatigue, creep, and mechanical shock conditions. Mechanical shock, in particular, has become an increasing concern in the electronics industry, since electronic packages can be subjected to mechanical shock by mishandling during manufacture or

The mechanical behavior of Pb-free solder alloys is important, since they must maintain mechanical integrity under thermomechanical fatigue, creep, and mechanical shock conditions. Mechanical shock, in particular, has become an increasing concern in the electronics industry, since electronic packages can be subjected to mechanical shock by mishandling during manufacture or by accidental dropping. In this study, the mechanical shock behavior of Sn and Sn-Ag-Cu alloys was systematically analyzed over the strain rate range 10-3 - 30 s-1 in bulk samples, and over 10-3 - 12 s-1 on the single solder joint level. More importantly, the influences of solder microstructure and intermetallic compounds (IMC) on mechanical shock resistance were quantified. A thorough microstructural characterization of Sn-rich alloys was conducted using synchrotron x-ray computed tomography. The three-dimensional morphology and distribution of contiguous phases and precipitates was analyzed. A multiscale approach was utilized to characterize Sn-rich phases on the microscale with x-ray tomography and focused ion beam tomography to characterize nanoscale precipitates. A high strain rate servohydraulic test system was developed in conjunction with a modified tensile specimen geometry and a high speed camera for quantifying deformation. The effect of microstructure and applied strain rate on the local strain and strain rate distributions were quantified using digital image correlation. Necking behavior was analyzed using a novel mirror fixture, and the triaxial stresses associated with necking were corrected using a self-consistent method to obtain the true stress-true strain constitutive behavior. Fracture mechanisms were quantified as a function of strain rate. Finally, the relationship between solder microstructure and intermetallic compound layer thickness with the mechanical shock resistance of Sn-3.8Ag-0.7Cu solder joints was characterized. It was found that at low strain rates the dynamic solder joint strength was controlled by the solder microstructure, while at high strain rates it was controlled by the IMC layer. The influences of solder microstructure and IMC layer thickness were then isolated using extended reflow or isothermal aging treatments. It was found that at large IMC layer thicknesses the trend described above does not hold true. The fracture mechanisms associated with the dynamic solder joint strength regimes were analyzed.
ContributorsYazzie, Kyle (Author) / Chawla, Nikhilesh (Thesis advisor) / Sane, Sandeep (Committee member) / Jiang, Hanqing (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2012