Matching Items (48)
Filtering by

Clear all filters

151846-Thumbnail Image.png
Description
Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased

Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased efficiency, but at the cost of distortion. Class AB amplifiers have low efficiency, but high linearity. By modulating the supply voltage of a Class AB amplifier to make a Class H amplifier, the efficiency can increase while still maintaining the Class AB level of linearity. A 92dB Power Supply Rejection Ratio (PSRR) Class AB amplifier and a Class H amplifier were designed in a 0.24um process for portable audio applications. Using a multiphase buck converter increased the efficiency of the Class H amplifier while still maintaining a fast response time to respond to audio frequencies. The Class H amplifier had an efficiency above the Class AB amplifier by 5-7% from 5-30mW of output power without affecting the total harmonic distortion (THD) at the design specifications. The Class H amplifier design met all design specifications and showed performance comparable to the designed Class AB amplifier across 1kHz-20kHz and 0.01mW-30mW. The Class H design was able to output 30mW into 16Ohms without any increase in THD. This design shows that Class H amplifiers merit more research into their potential for increasing efficiency of audio amplifiers and that even simple designs can give significant increases in efficiency without compromising linearity.
ContributorsPeterson, Cory (Author) / Bakkaloglu, Bertan (Thesis advisor) / Barnaby, Hugh (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
152978-Thumbnail Image.png
Description
Nonvolatile memory (NVM) technologies have been an integral part of electronic systems for the past 30 years. The ideal non-volatile memory have minimal physical size, energy usage, and cost while having maximal speed, capacity, retention time, and radiation hardness. A promising candidate for next-generation memory is ion-conducting bridging RAM which

Nonvolatile memory (NVM) technologies have been an integral part of electronic systems for the past 30 years. The ideal non-volatile memory have minimal physical size, energy usage, and cost while having maximal speed, capacity, retention time, and radiation hardness. A promising candidate for next-generation memory is ion-conducting bridging RAM which is referred to as programmable metallization cell (PMC), conductive bridge RAM (CBRAM), or electrochemical metallization memory (ECM), which is likely to surpass flash memory in all the ideal memory characteristics. A comprehensive physics-based model is needed to completely understand PMC operation and assist in design optimization.

To advance the PMC modeling effort, this thesis presents a precise physical model parameterizing materials associated with both ion-rich and ion-poor layers of the PMC's solid electrolyte, so that captures the static electrical behavior of the PMC in both its low-resistance on-state (LRS) and high resistance off-state (HRS). The experimental data is measured from a chalcogenide glass PMC designed and manufactured at ASU. The static on- and off-state resistance of a PMC device composed of a layered (Ag-rich/Ag-poor) Ge30Se70 ChG film is characterized and modeled using three dimensional simulation code written in Silvaco Atlas finite element analysis software. Calibrating the model to experimental data enables the extraction of device parameters such as material bandgaps, workfunctions, density of states, carrier mobilities, dielectric constants, and affinities.

The sensitivity of our modeled PMC to the variation of its prominent achieved material parameters is examined on the HRS and LRS impedance behavior.

The obtained accurate set of material parameters for both Ag-rich and Ag-poor ChG systems and process variation verification on electrical characteristics enables greater fidelity in PMC device simulation, which significantly enhances our ability to understand the underlying physics of ChG-based resistive switching memory.
ContributorsRajabi, Saba (Author) / Barnaby, Hugh (Thesis advisor) / Kozicki, Michael (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2014
153545-Thumbnail Image.png
Description
For decades, microelectronics manufacturing has been concerned with failures related to electromigration phenomena in conductors experiencing high current densities. The influence of interconnect microstructure on device failures related to electromigration in BGA and flip chip solder interconnects has become a significant interest with reduced individual solder interconnect volumes. A survey

For decades, microelectronics manufacturing has been concerned with failures related to electromigration phenomena in conductors experiencing high current densities. The influence of interconnect microstructure on device failures related to electromigration in BGA and flip chip solder interconnects has become a significant interest with reduced individual solder interconnect volumes. A survey indicates that x-ray computed micro-tomography (µXCT) is an emerging, novel means for characterizing the microstructures' role in governing electromigration failures. This work details the design and construction of a lab-scale µXCT system to characterize electromigration in the Sn-0.7Cu lead-free solder system by leveraging in situ imaging.

In order to enhance the attenuation contrast observed in multi-phase material systems, a modeling approach has been developed to predict settings for the controllable imaging parameters which yield relatively high detection rates over the range of x-ray energies for which maximum attenuation contrast is expected in the polychromatic x-ray imaging system. In order to develop this predictive tool, a model has been constructed for the Bremsstrahlung spectrum of an x-ray tube, and calculations for the detector's efficiency over the relevant range of x-ray energies have been made, and the product of emitted and detected spectra has been used to calculate the effective x-ray imaging spectrum. An approach has also been established for filtering `zinger' noise in x-ray radiographs, which has proven problematic at high x-ray energies used for solder imaging. The performance of this filter has been compared with a known existing method and the results indicate a significant increase in the accuracy of zinger filtered radiographs.

The obtained results indicate the conception of a powerful means for the study of failure causing processes in solder systems used as interconnects in microelectronic packaging devices. These results include the volumetric quantification of parameters which are indicative of both electromigration tolerance of solders and the dominant mechanisms for atomic migration in response to current stressing. This work is aimed to further the community's understanding of failure-causing electromigration processes in industrially relevant material systems for microelectronic interconnect applications and to advance the capability of available characterization techniques for their interrogation.
ContributorsMertens, James Charles Edwin (Author) / Chawla, Nikhilesh (Thesis advisor) / Alford, Terry (Committee member) / Jiao, Yang (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2015
154176-Thumbnail Image.png
Description
Programmable metallization cell (PMC) technology employs the mechanisms of metal ion transport in solid electrolytes (SE) and electrochemical redox reactions in order to form metallic electrodeposits. When a positive bias is applied to an anode opposite to a cathode, atoms at the anode are oxidized to ions and dissolve into

Programmable metallization cell (PMC) technology employs the mechanisms of metal ion transport in solid electrolytes (SE) and electrochemical redox reactions in order to form metallic electrodeposits. When a positive bias is applied to an anode opposite to a cathode, atoms at the anode are oxidized to ions and dissolve into the SE. Under the influence of the electric field, the ions move to the cathode and become reduced to form the electrodeposits. These electrodeposits are filamentary in nature and persistent, and since they are metallic can alter the physical characteristics of the material on which they are formed. PMCs can be used as next generation memories, radio frequency (RF) switches and physical unclonable functions (PUFs).

The morphology of the filaments is impacted by the biasing conditions. Under a relatively high applied electric field, they form as dendritic elements with a low fractal dimension (FD), whereas a low electric field leads to high FD features. Ion depletion effects in the SE due to low ion diffusivity/mobility also influences the morphology by limiting the ion supply into the growing electrodeposit.

Ion transport in SE is due to hopping transitions driven by drift and diffusion force. A physical model of ion hopping with Brownian motion has been proposed, in which the ion transitions are random when time window is larger than characteristic time. The random growth process of filaments in PMC adds entropy to the electrodeposition, which leads to random features in the dendritic patterns. Such patterns has extremely high information capacity due to the fractal nature of the electrodeposits.

In this project, lateral-growth PMCs were fabricated, whose LRS resistance is less than 10Ω, which can be used as RF switches. Also, an array of radial-growth PMCs was fabricated, on which multiple dendrites, all with different shapes, could be grown simultaneously. Those patterns can be used as secure keys in PUFs and authentication can be performed by optical scanning.

A kinetic Monte Carlo (KMC) model is developed to simulate the ion transportation in SE under electric field. The simulation results matched experimental data well that validated the ion hopping model.
ContributorsYu, Weijie (Author) / Kozicki, Michael N (Thesis advisor) / Barnaby, Hugh (Thesis advisor) / Diaz, Rodolfo (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2015
155916-Thumbnail Image.png
Description
Aluminum alloys are ubiquitously used in almost all structural applications due to their high strength-to-weight ratio. Their superior mechanical performance can be attributed to complex dispersions of nanoscale intermetallic particles that precipitate out from the alloy’s solid solution and offer resistance to deformation. Although they have been extensively investigated in

Aluminum alloys are ubiquitously used in almost all structural applications due to their high strength-to-weight ratio. Their superior mechanical performance can be attributed to complex dispersions of nanoscale intermetallic particles that precipitate out from the alloy’s solid solution and offer resistance to deformation. Although they have been extensively investigated in the last century, the traditional approaches employed in the past haven’t rendered an authoritative microstructural understanding in such materials. The effect of the precipitates’ inherent complex morphology and their three-dimensional (3D) spatial distribution on evolution and deformation behavior have often been precluded. In this study, for the first time, synchrotron-based hard X-ray nano-tomography has been implemented in Al-Cu alloys to measure growth kinetics of different nanoscale phases in 3D and reveal mechanistic insights behind some of the observed novel phase transformation reactions occurring at high temperatures. The experimental results were reconciled with coarsening models from the LSW theory to an unprecedented extent, thereby establishing a new paradigm for thermodynamic analysis of precipitate assemblies. By using a unique correlative approach, a non-destructive means of estimating precipitation-strengthening in such alloys has been introduced. Limitations of using existing mechanical strengthening models in such alloys have been discussed and a means to quantify individual contributions from different strengthening mechanisms has been established.

The current rapid pace of technological progress necessitates the demand for more resilient and high-performance alloys. To achieve this, a thorough understanding of the relationships between material properties and its structure is indispensable. To establish this correlation and achieve desired properties from structural alloys, microstructural response to mechanical stimuli needs to be understood in three-dimensions (3D). To that effect, in situ tests were conducted at the synchrotron (Advanced Photon Source) using Transmission X-Ray Microscopy as well as in a scanning electron microscope (SEM) to study real-time damage evolution in such alloys. Findings of precipitate size-dependent transition in deformation behavior from these tests have inspired a novel resilient aluminum alloy design.
ContributorsKaira, Chandrashekara Shashank (Author) / Chawla, Nikhilesh (Thesis advisor) / Solanki, Kiran (Committee member) / Jiao, Yang (Committee member) / De Andrade, Vincent (Committee member) / Arizona State University (Publisher)
Created2017
156172-Thumbnail Image.png
Description
In material science, microstructure plays a key role in determining properties, which further determine utility of the material. However, effectively measuring microstructure evolution in real time remains an challenge. To date, a wide range of advanced experimental techniques have been developed and applied to characterize material microstructure and structural evolution

In material science, microstructure plays a key role in determining properties, which further determine utility of the material. However, effectively measuring microstructure evolution in real time remains an challenge. To date, a wide range of advanced experimental techniques have been developed and applied to characterize material microstructure and structural evolution on different length and time scales. Most of these methods can only resolve 2D structural features within a narrow range of length scale and for a single or a series of snapshots. The currently available 3D microstructure characterization techniques are usually destructive and require slicing and polishing the samples each time a picture is taken. Simulation methods, on the other hand, are cheap, sample-free and versatile without the special necessity of taking care of the physical limitations, such as extreme temperature or pressure, which are prominent

issues for experimental methods. Yet the majority of simulation methods are limited to specific circumstances, for example, first principle computation can only handle several thousands of atoms, molecular dynamics can only efficiently simulate a few seconds of evolution of a system with several millions particles, and finite element method can only be used in continuous medium, etc. Such limitations make these individual methods far from satisfaction to simulate macroscopic processes that a material sample undergoes up to experimental level accuracy. Therefore, it is highly desirable to develop a framework that integrate different simulation schemes from various scales

to model complicated microstructure evolution and corresponding properties. Guided by such an objective, we have made our efforts towards incorporating a collection of simulation methods, including finite element method (FEM), cellular automata (CA), kinetic Monte Carlo (kMC), stochastic reconstruction method, Discrete Element Method (DEM), etc, to generate an integrated computational material engineering platform (ICMEP), which could enable us to effectively model microstructure evolution and use the simulated microstructure to do subsequent performance analysis. In this thesis, we will introduce some cases of building coupled modeling schemes and present

the preliminary results in solid-state sintering. For example, we use coupled DEM and kinetic Monte Carlo method to simulate solid state sintering, and use coupled FEM and cellular automata method to model microstrucutre evolution during selective laser sintering of titanium alloy. Current results indicate that joining models from different length and time scales is fruitful in terms of understanding and describing microstructure evolution of a macroscopic physical process from various perspectives.
ContributorsChen, Shaohua (Author) / Jiao, Yang (Thesis advisor) / Wang, Qinghua (Committee member) / Emady, Heather (Committee member) / Gel, Aytekin (Committee member) / Arizona State University (Publisher)
Created2018
156176-Thumbnail Image.png
Description
Metal Organic Frameworks(MOFs) have been used in various applications, including

sensors. The unique crystalline structure of MOFs in addition to controllability of

their pore size and their intake selectivity makes them a promising method of detection.

Detection of metal ions in water using a binary mixture of luminescent MOFs

has been reported. 3 MOFs(ZrPDA,

Metal Organic Frameworks(MOFs) have been used in various applications, including

sensors. The unique crystalline structure of MOFs in addition to controllability of

their pore size and their intake selectivity makes them a promising method of detection.

Detection of metal ions in water using a binary mixture of luminescent MOFs

has been reported. 3 MOFs(ZrPDA, UiO-66 and UiO-66-NH2) as detectors and 4

metal ions(Pb2+, Ni2+, Ba2+ and Cu2+) as the target species were chosen based on

cost, water stability, application and end goals.

It is possible to detect metal ions such as Pb2+ at concentrations at low as 0.005

molar using MOFs. Also, based on the luminescence responses, a method of distinguishing

between similar metal ions has been proposed. It is shown that using a

mixture of MOFs with dierent reaction to metal ions can lead to unique and specic

3D luminescence maps, which can be used to identify the present metal ions in water

and their amount.

In addition to the response of a single MOF to addition of a single metal ion,

luminescence response of ZrPDA + UiO-66 mixture to increasing concentration of

each of 4 metal ions was studied, and summarized. A new peak is observed in the

mixture, that did not exist before, and it is proposed that this peak requires metal

ions to activate
ContributorsSirous, Peyman (Author) / Mu, Bin (Thesis advisor) / Alford, Terry (Thesis advisor) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2018
156132-Thumbnail Image.png
Description
Interstitial impurity atoms can significantly alter the chemical and physical properties of the host material. Oxygen impurity in HCP titanium is known to have a considerable strengthening effect mainly through interactions with dislocations. To better understand such an effect, first the role of oxygen on various slip planes in titanium

Interstitial impurity atoms can significantly alter the chemical and physical properties of the host material. Oxygen impurity in HCP titanium is known to have a considerable strengthening effect mainly through interactions with dislocations. To better understand such an effect, first the role of oxygen on various slip planes in titanium is examined using generalized stacking fault energies (GSFE) computed by the first principles calculations. It is shown that oxygen can significantly increase the energy barrier to dislocation motion on most of the studied slip planes. Then the Peierls-Nabbaro model is utilized in conjunction with the GSFE to estimate the Peierls stress ratios for different slip systems. Using such information along with a set of tension and compression experiments, the parameters of a continuum scale crystal plasticity model, namely CRSS values, are calibrated. Effect of oxygen content on the macroscopic stress-strain response is further investigated through experiments on oxygen-boosted samples at room temperature. It is demonstrated that the crystal plasticity model can very well capture the effect of oxygen content on the global response of the samples. It is also revealed that oxygen promotes the slip activity on the pyramidal planes.

The effect of oxygen impurity on titanium is further investigated under high cycle fatigue loading. For that purpose, a two-step hierarchical crystal plasticity for fatigue predictions is presented. Fatigue indicator parameter is used as the main driving force in an energy-based crack nucleation model. To calculate the FIPs, high-resolution full-field crystal plasticity simulations are carried out using a spectral solver. A nucleation model is proposed and calibrated by the fatigue experimental data for notched titanium samples with different oxygen contents and under two load ratios. Overall, it is shown that the presented approach is capable of predicting the high cycle fatigue nucleation time. Moreover, qualitative predictions of microstructurally small crack growth rates are provided. The multi-scale methodology presented here can be extended to other material systems to facilitate a better understanding of the fundamental deformation mechanisms, and to effectively implement such knowledge in mesoscale-macroscale investigations.
ContributorsGholami Bazehhour, Benyamin (Author) / Solanki, Kiran N (Thesis advisor) / Liu, Yongming (Committee member) / Oswald, Jay J (Committee member) / Rajagopalan, Jagannathan (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2018
156466-Thumbnail Image.png
Description
Increasing density of microelectronic packages, results in an increase in thermal and mechanical stresses within the various layers of the package. To accommodate the high-performance demands, the materials used in the electronic package would also require improvement. Specifically, the damage that often occurs in solders that function as die-attachment and

Increasing density of microelectronic packages, results in an increase in thermal and mechanical stresses within the various layers of the package. To accommodate the high-performance demands, the materials used in the electronic package would also require improvement. Specifically, the damage that often occurs in solders that function as die-attachment and thermal interfaces need to be addressed. This work evaluates and characterizes thermo-mechanical damage in two material systems – Electroplated Tin and Sintered Nano-Silver solder.

Tin plated electrical contacts are prone to formation of single crystalline tin whiskers which can cause short circuiting. A mechanistic model of their formation, evolution and microstructural influence is still not fully understood. In this work, growth of mechanically induced tin whiskers/hillocks is studied using in situ Nano-indentation and Electron Backscatter Diffraction (EBSD). Electroplated tin was indented and monitored in vacuum to study growth of hillocks without the influence of atmosphere. Thermal aging was done to study the effect of intermetallic compounds. Grain orientation of the hillocks and the plastically deformed region surrounding the indent was studied using Focused Ion Beam (FIB) lift-out technique. In addition, micropillars were milled on the surface of electroplated Sn using FIB to evaluate the yield strength and its relation to Sn grain size.

High operating temperature power electronics use wide band-gap semiconductor devices (Silicon Carbide/Gallium Nitride). The operating temperature of these devices can exceed 250oC, preventing use of traditional Sn-solders as Thermal Interface materials (TIM). At high temperature, the thermomechanical stresses can severely degrade the reliability and life of the device. In this light, new non-destructive approach is needed to understand the damage mechanism when subjected to reliability tests such as thermal cycling. In this work, sintered nano-Silver was identified as a promising high temperature TIM. Sintered nano-Silver samples were fabricated and their shear strength was evaluated. Thermal cycling tests were conducted and damage evolution was characterized using a lab scale 3D X-ray system to periodically assess changes in the microstructure such as cracks, voids, and porosity in the TIM layer. The evolution of microstructure and the effect of cycling temperature during thermal cycling are discussed.
ContributorsLujan Regalado, Irene (Author) / Chawla, Nikhilesh (Thesis advisor) / Frear, Darrel (Committee member) / Rajagopalan, Jagannathan (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2018
156712-Thumbnail Image.png
Description
Fatigue is a degradation process of materials that would lead to failure when materials are subjected to cyclic loadings. During past centuries, various of approaches have been proposed and utilized to help researchers understand the underlying theories of fatigue behavior of materials, as well as design engineering structures so that

Fatigue is a degradation process of materials that would lead to failure when materials are subjected to cyclic loadings. During past centuries, various of approaches have been proposed and utilized to help researchers understand the underlying theories of fatigue behavior of materials, as well as design engineering structures so that catastrophic disasters that arise from fatigue failure could be avoided. The stress-life approach is the most classical way that academia applies to analyze fatigue data, which correlates the fatigue lifetime with stress amplitudes during cyclic loadings. Fracture mechanics approach is another well-established way, by which people regard the cyclic stress intensity factor as the driving force during fatigue crack nucleation and propagation, and numerous models (such as the well-known Paris’ law) are developed by researchers.

The significant drawback of currently widely-used fatigue analysis approaches, nevertheless, is that they are all cycle-based, limiting researchers from digging into sub-cycle regime and acquiring real-time fatigue behavior data. The missing of such data further impedes academia from validating hypotheses that are related to real-time observations of fatigue crack nucleation and growth, thus the existence of various phenomena, such as crack closure, remains controversial.

In this thesis, both classical stress-life approach and fracture-mechanics-based approach are utilized to study the fatigue behavior of alloys. Distinctive material characterization instruments are harnessed to help collect and interpret key data during fatigue crack growth. Specifically, an investigation on the sub-cycle fatigue crack growth behavior is enabled by in-situ SEM mechanical testing, and a non-uniform growth mechanism within one loading cycle is confirmed by direct observation as well as image interpretation. Predictions based on proposed experimental procedure and observations show good match with cycle-based data from references, which indicates the credibility of proposed methodology and model, as well as their capability of being applied to a wide range of materials.
ContributorsLiu, Siying (Author) / Liu, Yongming (Thesis advisor) / Jiao, Yang (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2018