Matching Items (17)
Filtering by

Clear all filters

150047-Thumbnail Image.png
Description
Amorphous oxide semiconductors are promising new materials for various optoelectronic applications. In this study, improved electrical and optical properties upon thermal and microwave processing of mixed-oxide semiconductors are reported. First, arsenic-doped silicon was used as a model system to understand susceptor-assisted microwave annealing. Mixed oxide semiconductor films of indium zinc

Amorphous oxide semiconductors are promising new materials for various optoelectronic applications. In this study, improved electrical and optical properties upon thermal and microwave processing of mixed-oxide semiconductors are reported. First, arsenic-doped silicon was used as a model system to understand susceptor-assisted microwave annealing. Mixed oxide semiconductor films of indium zinc oxide (IZO) and indium gallium zinc oxide (IGZO) were deposited by room-temperature RF sputtering on flexible polymer substrates. Thermal annealing in different environments - air, vacuum and oxygen was done. Electrical and optical characterization was carried out before and after annealing. The degree of reversal in the degradation in electrical properties of the thin films upon annealing in oxygen was assessed by subjecting samples to subsequent vacuum anneals. To further increase the conductivity of the IGZO films, Ag layers of various thicknesses were embedded between two IGZO layers. Optical performance of the multilayer structures was improved by susceptor-assisted microwave annealing and furnace-annealing in oxygen environment without compromising on their electrical conductivity. The post-processing of the films in different environments was used to develop an understanding of mechanisms of carrier generation, transport and optical absorption. This study establishes IGZO as a viable transparent conductor, which can be deposited at room-temperature and processed by thermal and microwave annealing to improve electrical and optical performance for applications in flexible electronics and optoelectronics.
ContributorsGadre, Mandar (Author) / Alford, Terry L. (Thesis advisor) / Schroder, Dieter (Committee member) / Krause, Stephen (Committee member) / Theodore, David (Committee member) / Arizona State University (Publisher)
Created2011
150204-Thumbnail Image.png
Description
Programmable metallization cell (PMC) technology is based on an electrochemical phenomenon in which a metallic electrodeposit can be grown or dissolved between two electrodes depending on the voltage applied between them. Devices based on this phenomenon exhibit a unique, self-healing property, as a broken metallic structure can be healed by

Programmable metallization cell (PMC) technology is based on an electrochemical phenomenon in which a metallic electrodeposit can be grown or dissolved between two electrodes depending on the voltage applied between them. Devices based on this phenomenon exhibit a unique, self-healing property, as a broken metallic structure can be healed by applying an appropriate voltage between the two broken ends. This work explores methods of fabricating interconnects and switches based on PMC technology on flexible substrates. The objective was the evaluation of the feasibility of using this technology in flexible electronics applications in which reliability is a primary concern. The re-healable property of the interconnect is characterized for the silver doped germanium selenide (Ag-Ge-Se) solid electrolyte system. This property was evaluated by measuring the resistances of the healed interconnect structures and comparing these to the resistances of the unbroken structures. The reliability of the interconnects in both unbroken and healed states is studied by investigating the resistances of the structures to DC voltages, AC voltages and different temperatures as a function of time. This work also explores replacing silver with copper for these interconnects to enhance their reliability. A model for PMC-based switches on flexible substrates is proposed and compared to the observed device behavior with the objective of developing a formal design methodology for these devices. The switches were subjected to voltage sweeps and their resistance was investigated as a function of sweep voltage. The resistance of the switches as a function of voltage pulse magnitude when placed in series with a resistance was also investigated. A model was then developed to explain the behavior of these devices. All observations were based on statistical measurements to account for random errors. The results of this work demonstrate that solid electrolyte based interconnects display self-healing capability, which depends on the applied healing voltage and the current limit. However, they fail at lower current densities than metal interconnects due to an ion-drift induced failure mechanism. The results on the PMC based switches demonstrate that a model comprising a Schottky diode in parallel with a variable resistor predicts the behavior of the device.
ContributorsBaliga, Sunil Ravindranath (Author) / Kozicki, Michael N (Thesis advisor) / Schroder, Dieter K. (Committee member) / Chae, Junseok (Committee member) / Alford, Terry L. (Committee member) / Arizona State University (Publisher)
Created2011
151425-Thumbnail Image.png
Description
HgCdTe is currently the dominant material for infrared sensing and imaging, and is usually grown on lattice-matched bulk CdZnTe (CZT) substrates. There have been significant recent efforts to identify alternative substrates to CZT as well as alternative detector materials to HgCdTe. In this dissertation research, a wide range of transmission

HgCdTe is currently the dominant material for infrared sensing and imaging, and is usually grown on lattice-matched bulk CdZnTe (CZT) substrates. There have been significant recent efforts to identify alternative substrates to CZT as well as alternative detector materials to HgCdTe. In this dissertation research, a wide range of transmission electron microscopy (TEM) imaging and analytical techniques was used in the characterization of epitaxial HgCdTe and related materials and substrates for third generation IR detectors. ZnTe layers grown on Si substrates are considered to be promising candidates for lattice-matched, large-area, and low-cost composite substrates for deposition of II-VI and III-V compound semiconductors with lattice constants near 6.1 Å. After optimizing MBE growth conditions including substrate pretreatment prior to film growth, as well as nucleation and growth temperatures, thick ZnTe/Si films with high crystallinity, low defect density, and excellent surface morphology were achieved. Changes in the Zn/Te flux ratio used during growth were also investigated. Small-probe microanalysis confirmed that a small amount of As was present at the ZnTe/Si interface. A microstructural study of HgCdTe/CdTe/GaAs (211)B and CdTe/GaAs (211)B heterostructures grown using MBE was carried out. High quality MBE-grown CdTe on GaAs(211)B substrates was demonstrated to be a viable composite substrate platform for HgCdTe growth. In addition, analysis of interfacial misfit dislocations and residual strain showed that the CdTe/GaAs interface was fully relaxed. In the case of HgCdTe/CdTe/ GaAs(211)B, thin HgTe buffer layers between HgCdTe and CdTe were also investigated for improving the HgCdTe crystal quality. A set of ZnTe layers epitaxially grown on GaSb(211)B substrates using MBE was studied using high resolution X-ray diffraction (HRXRD) measurements and TEM characterization in order to investigate conditions for defect-free growth. HRXRD results gave critical thickness estimates between 350 nm and 375 nm, in good agreement with theoretical predictions. Moreover, TEM results confirmed that ZnTe layers with thicknesses of 350 nm had highly coherent interfaces and very low dislocation densities, unlike samples with the thicker ZnTe layers.
ContributorsKim, Jae Jin (Author) / Smith, David J. (Thesis advisor) / McCartney, Martha R. (Committee member) / Alford, Terry L. (Committee member) / Crozier, Peter A. (Committee member) / Arizona State University (Publisher)
Created2012
151301-Thumbnail Image.png
Description
Zinc oxide (ZnO) has attracted much interest during last decades as a functional material. Furthermore, ZnO is a potential material for transparent conducting oxide material competing with indium tin oxide (ITO), graphene, and carbon nanotube film. It has been known as a conductive material when doped with elements such as

Zinc oxide (ZnO) has attracted much interest during last decades as a functional material. Furthermore, ZnO is a potential material for transparent conducting oxide material competing with indium tin oxide (ITO), graphene, and carbon nanotube film. It has been known as a conductive material when doped with elements such as indium, gallium and aluminum. The solubility of those dopant elements in ZnO is still debatable; but, it is necessary to find alternative conducting materials when their form is film or nanostructure for display devices. This is a consequence of the ever increasing price of indium. In addition, a new generation solar cell (nanostructured or hybrid photovoltaics) requires compatible materials which are capable of free standing on substrates without seed or buffer layers and have the ability introduce electrons or holes pathway without blocking towards electrodes. The nanostructures for solar cells using inorganic materials such as silicon (Si), titanium oxide (TiO2), and ZnO have been an interesting topic for research in solar cell community in order to overcome the limitation of efficiency for organic solar cells. This dissertation is a study of the rational solution-based synthesis of 1-dimentional ZnO nanomaterial and its solar cell applications. These results have implications in cost effective and uniform nanomanufacturing for the next generation solar cells application by controlling growth condition and by doping transition metal element in solution.
ContributorsChoi, Hyung Woo (Author) / Alford, Terry L. (Thesis advisor) / Krause, Stephen (Committee member) / Theodore, N. David (Committee member) / Arizona State University (Publisher)
Created2012
149342-Thumbnail Image.png
Description
The object of this body of work is to study the properties and suitability of zinc oxide thin films with a view to engineering them for optoelectronics applications, making them a cheap and effective alternative to indium tin oxide (ITO), the most used transparent conducting oxides in the industry. Initially,

The object of this body of work is to study the properties and suitability of zinc oxide thin films with a view to engineering them for optoelectronics applications, making them a cheap and effective alternative to indium tin oxide (ITO), the most used transparent conducting oxides in the industry. Initially, a study was undertaken to examine the behavior of silver contacts to ZnO and ITO during thermal processing, a step frequently used in materials processing in optoelectronics. The second study involved an attempt to improve the conductivity of ZnO films by inserting a thin copper layer between two ZnO layers. The Hall resistivity of the films was as low as 6.9×10-5 -cm with a carrier concentration of 1.2×1022 cm-3 at the optimum copper layer thickness. The physics of conduction in the films has been examined. In order to improve the average visible transmittance, we replaced the copper layer with gold. The films were then found to undergo a seven orders of magnitude drop in effective resistivity from 200 -cm to 5.2×10-5 -cm The films have an average transmittance between 75% and 85% depending upon the gold thickness, and a peak transmittance of up to 93%. The best Haacke figure of merit was 15.1×10-3 . Finally, to test the multilayer transparent electrodes on a device, ZnO/Au/ZnO (ZAZ) electrodes were evaluated as transparent electrodes for organic light-emitting devices (OLEDs). The electrodes exhibited substantially enhanced conductivity (about 8×10-5 -cm) over conventional indium tin oxide (ITO) electrodes (about 3.2×10-5 -cm). OLEDs fabricated with the ZAZ electrodes showed reduced leakage compared to control OLEDs on ITO and reduced ohmic losses at high current densities. At a luminance of 25000 cd/m2, the lum/W efficiency of the ZAZ electrode based device improved by 5% compared to the device on ITO. A normalized intensity graph of the colour output from the green OLEDs shows that ZAZ electrodes allow for a broader spectral output in the green wavelength region of peak photopic sensitivity compared to ITO. The results have implications for electrode choice in display technology.
ContributorsSivaramakrishnan, Karthik (Author) / Alford, Terry L. (Thesis advisor) / Schroder, Dieter K. (Committee member) / Newman, Nathan (Committee member) / Theodore, David N (Committee member) / Arizona State University (Publisher)
Created2010
149554-Thumbnail Image.png
Description
The object of this study is to investigate and improve the performance/stability of the flexible thin film transistors (TFTs) and to study the properties of metal oxide transparent conductive oxides for wide range of flexible electronic applications. Initially, a study has been done to improve the conductivity of ITO (indium

The object of this study is to investigate and improve the performance/stability of the flexible thin film transistors (TFTs) and to study the properties of metal oxide transparent conductive oxides for wide range of flexible electronic applications. Initially, a study has been done to improve the conductivity of ITO (indium tin oxide) films on PEN (polyethylene naphthalate) by inserting a thin layer of silver layer between two ITO layers. The multilayer with an optimum Ag mid-layer thickness, of 8 nm, exhibited excellent photopic average transmittance (~ 88 %), resistivity (~ 2.7 × 10-5 µ-cm.) and has the best Hackee figure of merit (41.0 × 10-3 Ω-1). The electrical conduction is dominated by two different scattering mechanisms depending on the thickness of the Ag mid-layer. Optical transmission is explained by scattering losses and absorption of light due to inter-band electronic transitions. A systematic study was carried out to improve the performance/stability of the TFTs on PEN. The performance and stability of a-Si:H and a-IZO (amorphous indium zinc oxide) TFTs were improved by performing a systematic low temperature (150 °C) anneals for extended times. For 96 hours annealed a-Si:H TFTs, the sub-threshold slope and off-current were reduced by a factor ~ 3 and by 2 orders of magnitude, respectively when compared to unannealed a-Si:H TFTs. For a-IZO TFTs, 48 hours of annealing is found to be the optimum time for the best performance and elevated temperature stability. These devices exhibit saturation mobility varying between 4.5-5.5 cm2/V-s, ION/IOFF ratio was 106 and a sub-threshold swing variation of 1-1.25 V/decade. An in-depth study on the mechanical and electromechanical stress response on the electrical properties of the a-IZO TFTs has also been investigated. Finally, the a-Si:H TFTs were exposed to gamma radiation to examine their radiation resistance. The interface trap density (Nit) values range from 5 to 6 × 1011 cm-2 for only electrical stress bias case. For "irradiation only" case, the Nit value increases from 5×1011 cm-2 to 2×1012 cm-2 after 3 hours of gamma radiation exposure, whereas it increases from 5×1011 cm-2 to 4×1012 cm-2 for "combined gamma and electrical stress".
ContributorsIndluru, Anil (Author) / Alford, Terry L. (Thesis advisor) / Schroder, Dieter (Committee member) / Krause, Stephen (Committee member) / Theodore, David (Committee member) / Arizona State University (Publisher)
Created2011
151814-Thumbnail Image.png
Description
This research emphasizes the use of low energy and low temperature post processing to improve the performance and lifetime of thin films and thin film transistors, by applying the fundamentals of interaction of materials with conductive heating and electromagnetic radiation. Single frequency microwave anneal is used to rapidly recrystallize the

This research emphasizes the use of low energy and low temperature post processing to improve the performance and lifetime of thin films and thin film transistors, by applying the fundamentals of interaction of materials with conductive heating and electromagnetic radiation. Single frequency microwave anneal is used to rapidly recrystallize the damage induced during ion implantation in Si substrates. Volumetric heating of the sample in the presence of the microwave field facilitates quick absorption of radiation to promote recrystallization at the amorphous-crystalline interface, apart from electrical activation of the dopants due to relocation to the substitutional sites. Structural and electrical characterization confirm recrystallization of heavily implanted Si within 40 seconds anneal time with minimum dopant diffusion compared to rapid thermal annealed samples. The use of microwave anneal to improve performance of multilayer thin film devices, e.g. thin film transistors (TFTs) requires extensive study of interaction of individual layers with electromagnetic radiation. This issue has been addressed by developing detail understanding of thin films and interfaces in TFTs by studying reliability and failure mechanisms upon extensive stress test. Electrical and ambient stresses such as illumination, thermal, and mechanical stresses are inflicted on the mixed oxide based thin film transistors, which are explored due to high mobilities of the mixed oxide (indium zinc oxide, indium gallium zinc oxide) channel layer material. Semiconductor parameter analyzer is employed to extract transfer characteristics, useful to derive mobility, subthreshold, and threshold voltage parameters of the transistors. Low temperature post processing anneals compatible with polymer substrates are performed in several ambients (oxygen, forming gas and vacuum) at 150 °C as a preliminary step. The analysis of the results pre and post low temperature anneals using device physics fundamentals assists in categorizing defects leading to failure/degradation as: oxygen vacancies, thermally activated defects within the bandgap, channel-dielectric interface defects, and acceptor-like or donor-like trap states. Microwave anneal has been confirmed to enhance the quality of thin films, however future work entails extending the use of electromagnetic radiation in controlled ambient to facilitate quick post fabrication anneal to improve the functionality and lifetime of these low temperature fabricated TFTs.
ContributorsVemuri, Rajitha (Author) / Alford, Terry L. (Thesis advisor) / Theodore, N David (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2013
154352-Thumbnail Image.png
Description
Microwave properties of low-loss commercial dielectric materials are optimized by adding transition-metal dopants or alloying agents (i.e. Ni, Co, Mn) to tune the temperature coefficient of resonant frequency (τf) to zero. This occurs as a result of the temperature dependence of dielectric constant offsetting the thermal expansion. At cryogenic temperatures,

Microwave properties of low-loss commercial dielectric materials are optimized by adding transition-metal dopants or alloying agents (i.e. Ni, Co, Mn) to tune the temperature coefficient of resonant frequency (τf) to zero. This occurs as a result of the temperature dependence of dielectric constant offsetting the thermal expansion. At cryogenic temperatures, the microwave loss in these dielectric materials is dominated by electron paramagnetic resonance (EPR) loss, which results from the spin-excitations of d-shell electron spins in exchange-coupled clusters. We show that the origin of the observed magnetically-induced shifts in the dielectric resonator frequency originates from the same mechanism, as described by the Kramers-Kronig relations. The temperature coefficient of resonator frequency, τf, is related to three material parameters according to the equation, τf = - (½ τε + ½ τµ + αL), where τε, τµ, and αL are the temperature coefficient of dielectric constant, magnetic permeability, and lattice constant, respectively. Each of these parameters for dielectric materials of interest are measured experimentally. These results, in combination with density functional simulations, developed a much improved understanding of the fundamental mechanisms responsible for τf. The same experimental methods have been used to characterize in-situ the physical nature and concentration of performance-degrading point defects in the dielectrics of superconducting planar microwave resonators.
ContributorsZhang, Shengke (Author) / Newman, Nathan (Thesis advisor) / Alford, Terry L. (Committee member) / Chamberlin, Ralph (Committee member) / Flores, Marco (Committee member) / Singh, Rakesh K. (Committee member) / Arizona State University (Publisher)
Created2016
155111-Thumbnail Image.png
Description
Nanocrystalline (NC) materials experience inherent microstructural instability when exposed to elevated temperature, deformation rates or loads over long periods of time which limits its applications as well as processing. The instability arises due to the predominance of grain boundary (GB) diffusional processes which hastens coarsening. This dissertation aims to provide

Nanocrystalline (NC) materials experience inherent microstructural instability when exposed to elevated temperature, deformation rates or loads over long periods of time which limits its applications as well as processing. The instability arises due to the predominance of grain boundary (GB) diffusional processes which hastens coarsening. This dissertation aims to provide a solution for the very first time, through the development and characterization of a bulk NC alloy system. The NC-Cu-Ta discussed here offers exceptional thermal stability in addition to superior strength and creep resistance. The systematic study of the behavior of this material will pave the way for future development of NC materials with a multitude of optimized properties for extreme applications.

In-situ and ex-situ TEM characterization, multiple strain-rate compression testing and atomistic modeling were employed to investigate the behavior of NC-Cu-Ta under intense heating, stress/strain-rate and creep conditions. Results reveal, that temperature influences the misfit strain, leading to a significant change in flow stress, despite which (strength) remains greater than all known NC metals. Further, this alloy was found to achieve and retain strengths which were over two orders of magnitude higher than most NC metals under elevated temperature conditions. Dislocation-based slip was found to predominate at elevated temperatures for both high- and low-strain rate testing whereas twinning was favored during low temperature high-strain rate testing. The solute concentration was also found to play a role in dictating the deformation where heterogeneous twinnability was found to decrease with an increase in Ta concentration.

A paradigm-shift in the creep response of NC-materials with unprecedented property combinations is also reported, i.e., high strength with extremely high temperature creep resistance (6-8 orders higher than other NC materials), in this NC-Cu-Ta-alloy. The unique combination of properties in these NC-alloys is achieved through a processing route that creates distinct GB-pinning nanoclusters of the solute that favor kinetic stability of grains.

Overall, this dissertation provides an understanding of the mechanical response of a stable alloy system to extreme conditions, which was previously unattainable, and a perspective on the design of a new class of NC alloys exhibiting a multitude of optimized high temperature properties.
ContributorsRajagopalan, Mansa (Author) / Solanki, Kiran N. (Thesis advisor) / Alford, Terry L. (Committee member) / Jiao, Yang (Committee member) / Darling, Kris A. (Committee member) / Arizona State University (Publisher)
Created2016
154954-Thumbnail Image.png
Description
The state of the solar industry has reached a point where significant advancements in efficiency will require new materials and device concepts. The material class broadly known as the III-N's have a rich history as a commercially successful semiconductor. Since discovery in 2003 these materials have shown promise for the

The state of the solar industry has reached a point where significant advancements in efficiency will require new materials and device concepts. The material class broadly known as the III-N's have a rich history as a commercially successful semiconductor. Since discovery in 2003 these materials have shown promise for the field of photovoltaic solar technologies. However, inherent material issues in crystal growth and the subsequent effects on device performance have hindered their development. This thesis explores new growth techniques for III-N materials in tandem with new device concepts that will either work around the previous hindrances or open pathways to device technologies with higher theoretical limits than much of current photovoltaics. These include a novel crystal growth reactor, efforts in production of better quality material at faster rates, and development of advanced photovoltaic devices: an inversion junction solar cell, material work for hot carrier solar cell, ground work for a selective carrier contact, and finally a refractory solar cell for operation at several hundred degrees Celsius.
ContributorsWilliams, Joshua J (Author) / Honsberg, C. (Christiana B.) (Thesis advisor) / Goodnick, Stephen M. (Thesis advisor) / Williamson, Todd L. (Committee member) / Alford, Terry L. (Committee member) / King, Richard R. (Committee member) / Arizona State University (Publisher)
Created2016