Matching Items (5)
Filtering by

Clear all filters

156172-Thumbnail Image.png
Description
In material science, microstructure plays a key role in determining properties, which further determine utility of the material. However, effectively measuring microstructure evolution in real time remains an challenge. To date, a wide range of advanced experimental techniques have been developed and applied to characterize material microstructure and structural evolution

In material science, microstructure plays a key role in determining properties, which further determine utility of the material. However, effectively measuring microstructure evolution in real time remains an challenge. To date, a wide range of advanced experimental techniques have been developed and applied to characterize material microstructure and structural evolution on different length and time scales. Most of these methods can only resolve 2D structural features within a narrow range of length scale and for a single or a series of snapshots. The currently available 3D microstructure characterization techniques are usually destructive and require slicing and polishing the samples each time a picture is taken. Simulation methods, on the other hand, are cheap, sample-free and versatile without the special necessity of taking care of the physical limitations, such as extreme temperature or pressure, which are prominent

issues for experimental methods. Yet the majority of simulation methods are limited to specific circumstances, for example, first principle computation can only handle several thousands of atoms, molecular dynamics can only efficiently simulate a few seconds of evolution of a system with several millions particles, and finite element method can only be used in continuous medium, etc. Such limitations make these individual methods far from satisfaction to simulate macroscopic processes that a material sample undergoes up to experimental level accuracy. Therefore, it is highly desirable to develop a framework that integrate different simulation schemes from various scales

to model complicated microstructure evolution and corresponding properties. Guided by such an objective, we have made our efforts towards incorporating a collection of simulation methods, including finite element method (FEM), cellular automata (CA), kinetic Monte Carlo (kMC), stochastic reconstruction method, Discrete Element Method (DEM), etc, to generate an integrated computational material engineering platform (ICMEP), which could enable us to effectively model microstructure evolution and use the simulated microstructure to do subsequent performance analysis. In this thesis, we will introduce some cases of building coupled modeling schemes and present

the preliminary results in solid-state sintering. For example, we use coupled DEM and kinetic Monte Carlo method to simulate solid state sintering, and use coupled FEM and cellular automata method to model microstrucutre evolution during selective laser sintering of titanium alloy. Current results indicate that joining models from different length and time scales is fruitful in terms of understanding and describing microstructure evolution of a macroscopic physical process from various perspectives.
ContributorsChen, Shaohua (Author) / Jiao, Yang (Thesis advisor) / Wang, Qinghua (Committee member) / Emady, Heather (Committee member) / Gel, Aytekin (Committee member) / Arizona State University (Publisher)
Created2018
187404-Thumbnail Image.png
Description
This study presents an evaluation of the predicted flow behavior and the minimum outlet diameter in a computationally simulated hopper. The flow pattern in hoppers was simulated to test three size fractions, three moisture levels of microcrystalline cellulose (MCC), and two hopper wall angles in Multiphase Flow with Interphase eXchanges

This study presents an evaluation of the predicted flow behavior and the minimum outlet diameter in a computationally simulated hopper. The flow pattern in hoppers was simulated to test three size fractions, three moisture levels of microcrystalline cellulose (MCC), and two hopper wall angles in Multiphase Flow with Interphase eXchanges (MFiX). Predictions from MFiX were then compared to current literature. As expected, the smaller size fractions with lower water content were closer to ideal funnel flow than their larger counterparts. The predicted minimum outlet diameter in simulations showed good agreement with close to ideal flowability. These findings illustrate the connection between lab flowability experiments and computational simulations. Lastly, three fluidized bed simulations were also created in MFiX with zeolite 13X to analyze the pressure and velocity within the bed. The application of flowability simulations can improve the transport of solids in processing equipment used during the production of powders.
ContributorsBuchanan, Lidija (Author) / Emady, Heather (Thesis advisor) / Muhich, Christopher (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2023
158652-Thumbnail Image.png
Description
Energy return in footwear is associated with the damping behavior of midsole foams, which stems from the combination of cellular structure and polymeric material behavior. Recently, traditional ethyl vinyl acetate (EVA) foams have been replaced by BOOST(TM) foams, thereby reducing the energetic cost of running. These are bead foams made

Energy return in footwear is associated with the damping behavior of midsole foams, which stems from the combination of cellular structure and polymeric material behavior. Recently, traditional ethyl vinyl acetate (EVA) foams have been replaced by BOOST(TM) foams, thereby reducing the energetic cost of running. These are bead foams made from expanded thermoplastic polyurethane (eTPU), which have a multi-scale structure consisting of fused porous beads, at the meso-scale, and thousands of small closed cells within the beads at the micro-scale. Existing predictive models coarsely describe the macroscopic behavior but do not take into account strain localizations and microstructural heterogeneities. Thus, enhancement in material performance and optimization requires a comprehensive understanding of the foam’s cellular structure at all length scales and its influence on mechanical response.

This dissertation focused on characterization and deformation behavior of eTPU bead foams with a unique graded cell structure at the micro and meso-scale. The evolution of the foam structure during compression was studied using a combination of in situ lab scale and synchrotron x-ray tomography using a four-dimensional (4D, deformation + time) approach. A digital volume correlation (DVC) method was developed to elucidate the role of cell structure on local deformation mechanisms. The overall mechanical response was also studied ex situ to probe the effect of cell size distribution on the force-deflection behavior. The radial variation in porosity and ligament thickness profoundly influenced the global mechanical behavior. The correlation of changes in void size and shape helped in identifying potentially weak regions in the microstructure. Strain maps showed the initiation of failure in cell structure and it was found to be influenced by the heterogeneities around the immediate neighbors in a cluster of voids. Poisson’s ratio evaluated from DVC was related to the microstructure of the bead foams. The 4D approach taken here provided an in depth and mechanistic understanding of the material behavior, both at the bead and plate levels, that will be invaluable in designing the next generation of high-performance footwear.
ContributorsSundaram Singaravelu, Arun Sundar (Author) / Chawla, Nikhilesh (Thesis advisor) / Emady, Heather (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2020
158017-Thumbnail Image.png
Description
Mixed-ionic electronic conducting (MIEC) oxides have drawn much attention from researchers because of their potential in high temperature separation processes. Among many materials available, perovskite type and fluorite type oxides are the most studied for their excellent oxygen ion transport property. These oxides not only can be oxygen adsorbent or

Mixed-ionic electronic conducting (MIEC) oxides have drawn much attention from researchers because of their potential in high temperature separation processes. Among many materials available, perovskite type and fluorite type oxides are the most studied for their excellent oxygen ion transport property. These oxides not only can be oxygen adsorbent or O2-permeable membranes themselves, but also can be incorporated with molten carbonate to form dual-phase membranes for CO2 separation.

Oxygen sorption/desorption properties of perovskite oxides with and without oxygen vacancy were investigated first by thermogravimetric analysis (TGA) and fixed-bed experiments. The oxide with unique disorder-order phase transition during desorption exhibited an enhanced oxygen desorption rate during the TGA measurement but not in fixed-bed demonstrations. The difference in oxygen desorption rate is due to much higher oxygen partial pressure surrounding the sorbent during the fixed-bed oxygen desorption process, as revealed by X-ray diffraction (XRD) patterns of rapidly quenched samples.

Research on using perovskite oxides as CO2-permeable dual-phase membranes was subsequently conducted. Two CO2-resistant MIEC perovskite ceramics, Pr0.6Sr0.4Co0.2Fe0.8 O3-δ (PSCF) and SrFe0.9Ta0.1O3-δ (SFT) were chosen as support materials for membrane synthesis. PSCF-molten carbonate (MC) and SFT-MC membranes were prepared for CO2-O2 counter-permeation. The geometric factors for the carbonate phase and ceramic phase were used to calculate the effective carbonate and oxygen ionic conductivity in the carbonate and ceramic phase. When tested in CO2-O2 counter-permeation set-up, CO2 flux showed negligible change, but O2 flux decreased by 10-32% compared with single-component permeation. With CO2 counter-permeation, the total oxygen permeation flux is higher than that without counter-permeation.

A new concept of CO2-permselective membrane reactor for hydrogen production via steam reforming of methane (SRM) was demonstrated. The results of SRM in the membrane reactor confirm that in-situ CO2 removal effectively promotes water-gas shift conversion and thus enhances hydrogen yield. A modeling study was also conducted to assess the performance of the membrane reactor in high-pressure feed/vacuum sweep conditions, which were not carried out due to limitations in current membrane testing set-up. When 5 atm feed pressure and 10-3 atm sweep pressure were applied, the membrane reactor can produce over 99% hydrogen stream in simulation.
ContributorsWu, Han-Chun (Author) / Lin, Jerry Y.S. (Thesis advisor) / Deng, Shuguang (Committee member) / Jiao, Yang (Committee member) / Emady, Heather (Committee member) / Muhich, Christopherq (Committee member) / Arizona State University (Publisher)
Created2020
161746-Thumbnail Image.png
Description
The way a granular material is transported and handled plays a huge part in the quality of final product and the overall efficiency of the manufacturing process. Currently, there is a gap in the understanding of the basic relationship between the fundamental variables of granular materials such as moisture content,

The way a granular material is transported and handled plays a huge part in the quality of final product and the overall efficiency of the manufacturing process. Currently, there is a gap in the understanding of the basic relationship between the fundamental variables of granular materials such as moisture content, particle shape and size. This can lead to flowability issues like arching and ratholing, which can lead to unexpected downtimes in the whole manufacturing process and considerable wastage of time, energy, and resources. This study specifically focuses on the development of a model based on the surface mean diameter and the moisture content to predict the flow metric flow function coefficient (FFC) to describe the nature of flow of the material. The investigation involved three parts. The first entailed the characterization of the test materials with respect to their physical properties - density, size, and shape distributions. In the second, flowability tests were conducted with the FT4 Powder Rheometer. Shear cell tests were utilized to calculate each test specimen's flow function parameters. Finally, the physical properties were correlated with the results from the flowability tests to develop a reliable model to predict the nature of flow of the test specimens. The model displayed an average error of -6.5%. Predicted values showed great correlation with values obtained from further shear cell tests on the FT4 Rheometer. Additionally, particle shape factors and other flowability descriptors like Carr Index and Hausner Ratio were also evaluated for the sample materials. All size ranges displayed a decreasing trend in the values of Carr Index, Hausner Ratio, and FFC with increasing moisture percentages except the 5-11 micron glass beads, which showed an increasing trend in FFC. The results from this investigation could be helpful in designing equipment for powder handling and avoiding potential flowability issues.
ContributorsDeb, Anindya (Author) / Emady, Heather (Thesis advisor) / Marvi, Hamidreza (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2021