Matching Items (3)
Filtering by

Clear all filters

187404-Thumbnail Image.png
Description
This study presents an evaluation of the predicted flow behavior and the minimum outlet diameter in a computationally simulated hopper. The flow pattern in hoppers was simulated to test three size fractions, three moisture levels of microcrystalline cellulose (MCC), and two hopper wall angles in Multiphase Flow with Interphase eXchanges

This study presents an evaluation of the predicted flow behavior and the minimum outlet diameter in a computationally simulated hopper. The flow pattern in hoppers was simulated to test three size fractions, three moisture levels of microcrystalline cellulose (MCC), and two hopper wall angles in Multiphase Flow with Interphase eXchanges (MFiX). Predictions from MFiX were then compared to current literature. As expected, the smaller size fractions with lower water content were closer to ideal funnel flow than their larger counterparts. The predicted minimum outlet diameter in simulations showed good agreement with close to ideal flowability. These findings illustrate the connection between lab flowability experiments and computational simulations. Lastly, three fluidized bed simulations were also created in MFiX with zeolite 13X to analyze the pressure and velocity within the bed. The application of flowability simulations can improve the transport of solids in processing equipment used during the production of powders.
ContributorsBuchanan, Lidija (Author) / Emady, Heather (Thesis advisor) / Muhich, Christopher (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2023
158096-Thumbnail Image.png
Description
This dissertation describes the synthesis and study of porous nanocarbon and further treatment by introducing nitrogen and oxygen groups on nanocarbon, which can be used as electrodes for energy storage (supercapacitor). Electron microscopy is used to make nanoscale characterization. ZnO nanowires are used as the template of the porous nanocarbon,

This dissertation describes the synthesis and study of porous nanocarbon and further treatment by introducing nitrogen and oxygen groups on nanocarbon, which can be used as electrodes for energy storage (supercapacitor). Electron microscopy is used to make nanoscale characterization. ZnO nanowires are used as the template of the porous nanocarbon, and nitrogen doping and oxidation treatment can help further increase the capacitive performance of the nanocarbon.

The first part of this thesis focuses on the synthesis of ZnO nanowires. Uniform ZnO nanowires with ~30 nm in width are produced at 1100℃ in a tube furnace with flowing gases (N2: 500 sccm; O2: 15 sccm). The temperature control is one of the most important parameters for making thin and ultra-long ZnO nanowires.

The second part of the thesis is about the synthesis of nanocarbons. Ultrapure ethanol is used as the carbon source to make carbonaceous deposition on ZnO nanowires. The thickness of the nanocarbons can be controlled by reaction temperature and reaction time. When the reaction time was controlled around 1h, the carbonaceous materials coating the ZnO nanowires become very thin. Then by flowing (1000 sccm) hydrogen at 750℃ through the reaction tube the ZnO nanowires are removed due to reduction and evaporation. Electrochemical evaluation of the produced nanocarbons shows that the nanocarbons possess very high specific surface area (>1400 m2/g) and a capacitance as high as 180 F/g at 10A/g in 6M KOH).

The third part of the thesis is the treatment of the as-synthesized nanocarbons to further increase capacitance. NH3 was used as the nitrogen source to react with nanocarbons at 700℃ to incorporate nitrogen group. Nitric acid (HNO3) is used as the oxidant to introduce oxygen groups. After proper nitrogen doping, the nitrogen doped nanocarbons can show high specific capacitance of 260 F/g at 1A/g in 6M KOH. After further oxidation treatment, the capacitance of the oxidized N-doped nanocarbons increased to 320 F/g at 1A/g in 6M KOH.
ContributorsZhang, Yizhi (Author) / Liu, Jingyue (Thesis advisor) / Wang, Qinghua (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2020
161946-Thumbnail Image.png
Description
The objective of this research was to develop Aluminophosphate-five (AlPO4-5, AFI) zeolite adsorbents for efficient oxygen removal from a process stream to support an on-going Department of Energy (DOE) project on solar energy storage. A molecular simulation study predicted that substituted AlPO4-5 zeolite can adsorb O2 through a weak chemical

The objective of this research was to develop Aluminophosphate-five (AlPO4-5, AFI) zeolite adsorbents for efficient oxygen removal from a process stream to support an on-going Department of Energy (DOE) project on solar energy storage. A molecular simulation study predicted that substituted AlPO4-5 zeolite can adsorb O2 through a weak chemical bond at ambient temperature. Substituted AlPO4-5 zeolite was successfully synthesized via hydrothermal crystallization by following carefully designed procedures to tailor the zeolite for efficient O2 adsorption. Synthesized AlPO4-5 in this work included Sn/AlPO-5, Mo/AlPO-5, Pd/AlPO-5, Si/AlPO-5, Mn/AlPO-5, Ce/AlPO-5, Fe/AlPO-5, CuCe/AlPO-5, and MnSnSi/AlPO-5. While not all zeolite samples synthesized were fully characterized, selected zeolite samples were characterized by powder x-ray diffraction (XRD) for crystal structure confirmation and phase identification, and nitrogen adsorption for their pore textural properties. The Brunauer-Emmett-Teller (BET) specific surface area and pore size distribution were between 172 m2 /g - 306 m2 /g and 6Å - 9Å, respectively, for most of the zeolites synthesized. Samples of great interest to this project such as Sn/AlPO-5, Mo/AlPO-5 and MnSnSi/AlPO-5 were also characterized using x-ray photoelectron spectroscopy (XPS) and energy-dispersive x-ray spectroscopy (EDS) for elemental analysis, scanning electron microscopy (SEM) for morphology and particle size estimation, and electron paramagnetic resonance (EPR) for nature of adsorbed oxygen. Oxygen and nitrogen adsorption experiments were carried out in a 3-Flex adsorption apparatus (Micrometrics) at various temperatures (primarily at 25℃) to determine the adsorption properties of these zeolite samples as potential adsorbents for oxygen/nitrogen separation. Experiments showed that some of the zeolite samples adsorb little-to-no oxygen and nitrogen at 25℃, while other zeolites such as Sn/AlPO-5, Mo/AlPO-5, and MnSnSi/AlPO-5 adsorb decent but inconsistent amounts of oxygen with the highest observed values of about 0.47 mmol/ g, 0.56 mmol/g, and 0.84 mmol/ g respectively. The inconsistency in adsorption is currently attributed to non-uniform doping of the zeolites, and these findings validate that some substituted AlPO4-5 zeolites are promising adsorbents. However, more investigations are needed to verify the causes of this inconsistency to develop a successful AlPO4-5 zeolite-based adsorbent for oxygen/nitrogen separation.
ContributorsBuyinza, Allan Smith (Author) / Deng, Shuguang (Thesis advisor) / Varman, Arul M (Committee member) / Jin, Kailong (Committee member) / Arizona State University (Publisher)
Created2021