Matching Items (1)
Filtering by

Clear all filters

171981-Thumbnail Image.png
Description
Kinetic Inductance Detectors (KIDs) offer highly sensitive solutions for millimeter and submillimeter wave astronomy. KIDs are superconducting detectors capable of measuring photon energy and arrival time. KIDs use the change in surface impedance of the superconductor when an incident photon is absorbed and breaks Cooper pairs in the superconducting

Kinetic Inductance Detectors (KIDs) offer highly sensitive solutions for millimeter and submillimeter wave astronomy. KIDs are superconducting detectors capable of measuring photon energy and arrival time. KIDs use the change in surface impedance of the superconductor when an incident photon is absorbed and breaks Cooper pairs in the superconducting material. This occurs when KIDs use a superconducting resonator: when a photon is incident on the inductor, the photon is absorbed and inductance increases and the resonant frequency decreases. The resonator is weakly coupled to a transmission line which naturally allows for multiplexing to allow up to thousands of detectors to be read out on one transmission line. In this thesis a KID is presented to be used at submillimeter wavelengths. I optimized a polarization-sensitive aluminum absorber for future Balloon-borne Large Aperture Submillimeter Telescope (BLAST) missions. BLAST is designed to investigate polarized interstellar dust and the role of magnetic fields on star formation. As part of the effort to develop aluminum KIDs for BLAST, I investigated the optical coupling method including different feedhorn structures and a hybrid design. I present a suite of simulations calculating the absorption efficiency of the absorber. The optimized KID is a feedhorn/waveguide coupled front-illuminated detector that achieves 70% absorption over the frequency band centered at 250um.
ContributorsChamberlin, Kathryn (Author) / Mauskopf, Philip (Thesis advisor) / Trichopoulos, Georgios (Committee member) / Zeinolabedinzadeh, Saeed (Committee member) / Arizona State University (Publisher)
Created2022