Matching Items (10)
Filtering by

Clear all filters

156687-Thumbnail Image.png
Description
Additive manufacturing (AM) describes an array of methods used to create a 3D object layer by layer. The increasing popularity of AM in the past decade has been due to its demonstrated potential to increase design flexibility, produce rapid prototypes, and decrease material waste. Temporary supports are an

Additive manufacturing (AM) describes an array of methods used to create a 3D object layer by layer. The increasing popularity of AM in the past decade has been due to its demonstrated potential to increase design flexibility, produce rapid prototypes, and decrease material waste. Temporary supports are an inconvenient necessity in many metal AM parts. These sacrificial structures are used to fabricate large overhangs, anchor the part to the build substrate, and provide a heat pathway to avoid warping. Polymers AM has addressed this issue by using support material that is soluble in an electrolyte that the base material is not. In contrast, metals AM has traditionally approached support removal using time consuming, costly methods such as electrical discharge machining or a dremel.

This work introduces dissolvable supports to single- and multi-material metals AM. The multi-material approach uses material choice to design a functionally graded material where corrosion is the functionality being varied. The single-material approach is the primary focus of this thesis, leveraging already common post-print heat treatments to locally alter the microstructure near the surface. By including a sensitizing agent in the ageing heat treatment, carbon is diffused into the part decreasing the corrosion resistance to a depth equal to at least half the support thickness. In a properly chosen electrolyte, this layer is easily chemically, or electrochemically removed. Stainless steel 316 (SS316) and Inconel 718 are both investigated to study this process using two popular alloys. The microstructure evolution and corrosion properties are investigated for both. For SS316, the effect of applied electrochemical potential is investigated to describe the varying corrosion phenomena induced, and the effect of potential choice on resultant roughness. In summary, a new approach to remove supports from metal AM parts is introduced to decrease costs and further the field of metals AM by expanding the design space.
ContributorsLefky, Christopher (Author) / Hildreth, Owen (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Azeredo, Bruno (Committee member) / Rykaczewski, Konrad (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2018
168291-Thumbnail Image.png
Description
Hydrogen is considered one of the most potential fuels due to its highest gravimetric energy density with no pollutant emission during the energy cycle. Among several techniques for hydrogen generation, the promising photoelectrochemical water oxidation is considered a long-term solar pathway by splitting water. The system contains a photoanode and

Hydrogen is considered one of the most potential fuels due to its highest gravimetric energy density with no pollutant emission during the energy cycle. Among several techniques for hydrogen generation, the promising photoelectrochemical water oxidation is considered a long-term solar pathway by splitting water. The system contains a photoanode and a cathode immersed in an aqueous electrolyte where charge separation takes place in the bulk of the semiconducting material on light absorption, leading to water oxidation/reduction at the surface of the photoelectrodes/cathode. It is imperative to develop materials that demonstrate high light absorption in the wide spectrum along with photoelectrochemical stability. N-type Monoclinic scheelite bismuth vanadate (BiVO4) is selected due to its incredible light absorption capabilities, direct bandgap (Eg ∼ 2.4-2.5 eV) and relatively better photoelectrochemical stability. However, BiVO4 encounters huge electron-hole recombination due to smaller diffusion lengths and positive conduction bands that cause slow charge dynamics and sluggish water oxidation kinetics. In order to improve the illustrated drawbacks, four strategies were discussed. Chapter 1 describe the fundamental understanding of photoelectrochemical cell and BiVO4. Chapter 2 illustrates details of the experimental procedure and state-of-the-art material characterization. Chapter 3 provide the impact of alkali metal placement in the crystal structure of BiVO4 systematically that exhibited ~20 times more performance than intrinsic BiVO4, almost complete bulk charge separation and enhancement in the diffusion length. Detailed characterization determined that the alkali metal getting placed in the interstitial void of BiVO4 lattice and multiple interbands formation enhanced the charge dynamics. Chapter 4 contains stoichiometric doping of Y3+ or Er3+ or Yb3+ at the Bi3+ site, leading to an extended absorption region, whereas non-stoichiometric W6+ doping at the V5+ site minimizes defects and increased charge carriers. To further enhance the performance, type-II heterojunction with WO3 along p-n junction with Fe:NiO enhance light absorption and charge dynamics close to the theoretical performance. Chapter 5 provides a comprehensive study of a uniquely developed sulfur modified Bi2O3 interface layer to facilitate charge dynamics and carrier lifetime improvement by effectively passivating the WO3/BiVO4 heterojunction interface. Finally, chapter 6 summarized the major findings, conclusion and outlook in developing BiVO4 as an efficient photoanode material.
ContributorsPrasad, Umesh (Author) / Kannan, Arunachala Mada (Thesis advisor) / Azeredo, Bruno (Committee member) / Chan, Candace (Committee member) / Segura, Sergio Garcia (Committee member) / Arizona State University (Publisher)
Created2021
171473-Thumbnail Image.png
Description
Applications such as heat exchangers, surface-based cellular structures, rotating blades, and waveguides rely on thin metal walls as crucial constituent elements of the structure. The design freedom enabled by laser powder bed fusion has led to an interest in exploiting this technology to further the performance of these components, many

Applications such as heat exchangers, surface-based cellular structures, rotating blades, and waveguides rely on thin metal walls as crucial constituent elements of the structure. The design freedom enabled by laser powder bed fusion has led to an interest in exploiting this technology to further the performance of these components, many of which retain their as-built surface morphologies on account of their design complexity. However, there is limited understanding of how and why mechanical properties vary by wall thickness for specimens that are additively manufactured and maintain an as-printed surface finish. Critically, the contributions of microstructure and morphology to the mechanical behavior of thin wall laser powder bed fusion structures have yet to be systematically identified and decoupled. This work focuses on elucidating the room temperature quasi-static tensile and high cycle fatigue properties of as-printed, thin-wall Inconel 718 fabricated using laser powder bed fusion, with the aim of addressing this critical gap in the literature. Wall thicknesses studied range from 0.3 - 2.0 mm, and the effects of Hot Isostatic Pressing are also examined, with sheet metal specimens used as a baseline for comparison. Statistical analyses are conducted to identify the significance of the dependence of properties on wall thickness and Hot Isostatic Pressing, as well as to examine correlations of these properties to section area, porosity, and surface roughness. A thorough microstructural study is complemented with a first-of-its-kind study of surface morphology to decouple their contributions and identify underlying causes for observed changes in mechanical properties. This thesis finds that mechanical properties in the quasi-static and fatigue framework do not see appreciable declines until specimen thickness is under 0.75 mm in thickness. The added Hot Isostatic Pressing heat treatment effectively closed pores, recrystallized the grain structure, and provided a more homogenous microstructure that benefits the modulus, tensile strength, elongation, and fatigue performance at higher stresses. Stress heterogeneities, primarily caused by surface defects, negatively affected the thinner specimens disproportionately. Without the use of the Hot Isostatic Pressing, the grain structure remained much more refined and benefitted the yield strength and fatigue endurance limit.
ContributorsParadise, Paul David (Author) / Bhate, Dhruv (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Azeredo, Bruno (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2022
171856-Thumbnail Image.png
Description
Polymer composite has been under rapid development with advancements in polymer chemistry, synthetic fibers, and nanoparticles. With advantages such as lightweight, corrosion resistance, and tunable functionalities, polymer composite plays a significant role in various applications such as aerospace, wearable electronics, energy storage systems, robotics, biomedicine, and microelectronics. In general, polymer

Polymer composite has been under rapid development with advancements in polymer chemistry, synthetic fibers, and nanoparticles. With advantages such as lightweight, corrosion resistance, and tunable functionalities, polymer composite plays a significant role in various applications such as aerospace, wearable electronics, energy storage systems, robotics, biomedicine, and microelectronics. In general, polymer composite can be divided into particulate-filled, fiber-filled, or network-filled types depending on the manufacturing process and internal structure. Over the years, fabrication processes on the macro- and micro-scales have been extensively explored. For example, lamination, fiber tow steering, and fiber spinning correspond to meter, millimeter, and micrometer scales, respectively. With the development of nanoparticles and their exceptional material properties, polymer nanoparticle composite has shown promising material property enhancements. However, the lack of economical solutions to achieve nanoscale nanoparticle morphology control limits the reinforcement efficiency and industrial applications. This dissertation focuses on utilizing additive manufacturing as a tooling method to achieve nanoparticle morphology control in polymer nanocomposite fibers. Chapter 1 gives a thorough background review regarding fiber composite, additive manufacturing, and the importance of nanoparticle orientation. Two types of nozzle designs, concentrical and layer-by-layer, are 3D printed and combined with the dry-jet-wet fiber spinning method to create continuous fibers with internal structures. Chapters 2 to 5 correspond to four stages of my research, namely, (2) multi-material fiber spinning, (3) interfacial-assisted nanoparticle alignment, (4) microscale patterning, and (5) nanoscale patterning. The achieved feature resolution also improves from 100 µm, 10 µm, 2 µm, to 170 nm, respectively. The process-structural-property relationship of polymer nanocomposite fibers is also investigated with applications demonstrations including sensors, electrically conductive fibers, thermally conductive fibers, and mechanically reinforced fibers. At last, Chapter 6 gives a summary and some future perspectives regarding fiber composites.
ContributorsXu, Weiheng (Author) / Song, Kenan (Thesis advisor) / Chen, Xiangfan (Committee member) / Kwon, Beomjin (Committee member) / Azeredo, Bruno (Committee member) / Arizona State University (Publisher)
Created2022
171974-Thumbnail Image.png
Description
The objective of this dissertation is to study the optical and radiative properties of inhomogeneous metallic structures. In the ongoing search for new materials with tunable optical characteristics, porous metals and nanowires provides an extensive design space to engineer its optical response based on the morphology-dependent phenomena.This dissertation firstly discusses

The objective of this dissertation is to study the optical and radiative properties of inhomogeneous metallic structures. In the ongoing search for new materials with tunable optical characteristics, porous metals and nanowires provides an extensive design space to engineer its optical response based on the morphology-dependent phenomena.This dissertation firstly discusses the use of aluminum nanopillar array on a quartz substrate as spectrally selective optical filter with narrowband transmission for thermophotovoltaic systems. The narrow-band transmission enhancement is attributed to the magnetic polariton resonance between neighboring aluminum nanopillars. Tuning of the resonance wavelengths for selective filters was achieved by changing the nanopillar geometry. It concludes by showing improved efficiency of Gallium-Antimonide thermophotovoltaic system by coupling the designed filter with the cell. Next, isotropic nanoporous gold films are investigated for applications in energy conversion and three-dimensional laser printing. The fabricated nanoporous gold samples are characterized by scanning electron microscopy, and the spectral hemispherical reflectance is measured with an integrating sphere. The effective isotropic optical constants of nanoporous gold with varying pore volume fraction are modeled using the Bruggeman effective medium theory. Nanoporous gold are metastable and to understand its temperature dependent optical properties, a lab-scale fiber-based optical spectrometer setup is developed to characterize the in-situ specular reflectance of nanoporous gold thin films at temperatures ranging from 25 to 500 oC. The in-situ and the ex-situ measurements suggest that the ii specular, diffuse, and hemispherical reflectance varies as a function of temperature due to the morphology (ligament diameter) change observed. The dissertation continues with modeling and measurements of the radiative properties of porous powders. The study shows the enhanced absorption by mixing porous copper to copper powder. This is important from the viewpoint of scalability to get end products such as sheets and tubes with the requirement of high absorptance that can be produced through three-dimensional printing. Finally, the dissertation concludes with recommendations on the methods to fabricate the suggested optical filters to improve thermophotovoltaic system efficiencies. The results presented in this dissertation will facilitate not only the manufacturing of materials but also the promising applications in solar thermal energy and optical systems.
ContributorsRamesh, Rajagopalan (Author) / Wang, Liping (Thesis advisor) / Azeredo, Bruno (Thesis advisor) / Phelan, Patrick (Committee member) / Yu, Hongbin (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2022
171532-Thumbnail Image.png
Description
Recent advancements in the field of light wavefront engineering rely on complex 3D metasurfaces composed of sub-wavelength structures which, for the near infrared range, are challenging to manufacture using contemporary scalable micro- and nanomachining solutions. To address this demand, a novel parallel micromachining method, called metal-assisted electrochemical nanoimprinting (Mac-Imprint) was

Recent advancements in the field of light wavefront engineering rely on complex 3D metasurfaces composed of sub-wavelength structures which, for the near infrared range, are challenging to manufacture using contemporary scalable micro- and nanomachining solutions. To address this demand, a novel parallel micromachining method, called metal-assisted electrochemical nanoimprinting (Mac-Imprint) was developed. Mac-Imprint relies on the catalysis of silicon wet etching by a gold-coated stamp enabled by mass-transport of the reactants to achieve high pattern transfer fidelity. This was realized by (i) using nanoporous catalysts to promote etching solution diffusion and (ii) semiconductor substrate pre-patterning with millimeter-scale pillars to provide etching solution storage. However, both of these approaches obstruct scaling of the process in terms of (i) surface roughness and resolution, and (ii) areal footprint of the fabricated structures. To address the first limitation, this dissertation explores fundamental mechanisms underlying the resolution limit of Mac-Imprint and correlates it to the Debye length (~0.9 nm). By synthesizing nanoporous catalytic stamps with pore size less than 10 nm, the sidewall roughness of Mac-Imprinted patterns is reduced to levels comparable to plasma-based micromachining. This improvement allows for the implementation of Mac-Imprint to fabricate Si rib waveguides with limited levels of light scattering on its sidewall. To address the second limitation, this dissertation focuses on the management of the etching solution storage by developing engineered stamps composed of highly porous polymers coated in gold. In a plate-to-plate configuration, such stamps allow for the uniform patterning of chip-scale Si substrates with hierarchical 3D antireflective and antifouling patterns. The development of a Mac-Imprint system capable of conformal patterning onto non-flat substrates becomes possible due to the flexible and stretchable nature of gold-coated porous polymer stamps. Understanding of their mechanical behavior during conformal contact allows for the first implementation of Mac-Imprint to directly micromachine 3D hierarchical patterns onto plano-convex Si lenses, paving the way towards scalable fabrication of multifunctional 3D metasurfaces for applications in advanced optics.
ContributorsSharstniou, Aliaksandr (Author) / Azeredo, Bruno (Thesis advisor) / Chan, Candace (Committee member) / Rykaczewski, Konrad (Committee member) / Petuskey, William (Committee member) / Chen, Xiangfan (Committee member) / Arizona State University (Publisher)
Created2022
161594-Thumbnail Image.png
Description
Laser Powder Bed Fusion (LPBF) is an additive manufacturing (AM) technology that has emerged as the predominant technology for metal 3D printing. An alloy of particular interest to the aerospace industry is the nickel-based superalloy, Inconel 718 (IN718), which is widely used for its superior performance in elevated temperature conditions,

Laser Powder Bed Fusion (LPBF) is an additive manufacturing (AM) technology that has emerged as the predominant technology for metal 3D printing. An alloy of particular interest to the aerospace industry is the nickel-based superalloy, Inconel 718 (IN718), which is widely used for its superior performance in elevated temperature conditions, particularly for gas-turbine engine blades and heat exchangers. With LPBF providing new ways of exploiting complex part geometry, the high-temperature properties of the AM version of the alloy must be understood. Of additional interest is how these properties change as a function of geometry and post-processing. This research focuses on the behavior of LPBF IN718 as a function of hot isostatic pressing (HIP) and specimen thickness at elevated temperatures. These results and behavior were compared to the behavior of IN718 sheet metal for properties such as True Ultimate Tensile Strength (UTS), Yield Strength, Young’s Modulus, percent elongation, and necking. The results showed dependence of strength on both thickness and HIP condition, and also exhibited a steep drop in UTS and yield strength at 1600 °F, linearly declining modulus, and excess dynamic strain ageing (DSA) behavior at certain temperatures.
ContributorsTemes, Samuel (Author) / Bhate, Dhruv (Thesis advisor) / Azeredo, Bruno (Committee member) / Das, Partha (Committee member) / Arizona State University (Publisher)
Created2021
161844-Thumbnail Image.png
Description
Thermal management is a critical aspect of microelectronics packaging and often centers around preventing central processing units (CPUs) and graphics processing units (GPUs) from overheating. As the need for power going into these processors increases, so too does the need for more effective thermal management strategies. One such strategy is

Thermal management is a critical aspect of microelectronics packaging and often centers around preventing central processing units (CPUs) and graphics processing units (GPUs) from overheating. As the need for power going into these processors increases, so too does the need for more effective thermal management strategies. One such strategy is to utilize additive manufacturing to fabricate heat sinks with bio-inspired and cellular structures and is the focus of this thesis. In this study, a process was developed for manufacturing the copper alloy CuNi2SiCr on the 100w Concept Laser Mlab laser powder bed fusion 3D printer to obtain parts that were 94% dense, while dealing with challenges of low absorptivity in copper and its high potential for oxidation. The developed process was then used to manufacture and test heat sinks with traditional pin and fin designs to establish a baseline cooling effect, as determined from tests conducted on a substrate, CPU and heat spreader assembly. Two additional heat sinks were designed, the first of these being bio-inspired and the second incorporating Triply Periodic Minimal Surface (TPMS) cellular structures, with the aim of trying to improve the cooling effect relative to commercial heat sinks. The results showed that the pure copper commercial pin-design heat sink outperformed the additive manufactured (AM) pin-design heat sink under both natural and forced convection conditions due to its approximately tenfold higher thermal conductivity, but that the gap in performance could be bridged using the bio-inspired and Schwarz-P heat sink designs developed in this work and is an encouraging indicator that further improvements could be obtained with improved alloys, heat treatments and even more innovative designs.
ContributorsYaple, Jordan Marie (Author) / Bhate, Dhruv (Thesis advisor) / Azeredo, Bruno (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2021
161677-Thumbnail Image.png
Description
Corrosion is one of the key failure modes for stainless steel (SS) piping assets handling water resources managed by utility companies. During downtime, the costs start to incur as the field engineer procures its replacement parts. The parts may or may not be in stock depending on how old, complex,

Corrosion is one of the key failure modes for stainless steel (SS) piping assets handling water resources managed by utility companies. During downtime, the costs start to incur as the field engineer procures its replacement parts. The parts may or may not be in stock depending on how old, complex, and common the part model is. As a result, water utility companies and its resilience to operate amid part failure are a strong function of the supply chain for replacement piping. Metal additive manufacturing (AM) has been widely recognized for its ability to (a) deliver small production scales, (b) address complex part geometries, (c) offer large elemental metal and alloy selections, (d) provide superior material properties. The key motive is to harvest the short lead time of metal AM to explore its use for replacement parts for legacy piping assets in utility-scale water management facilities. In this paper, the goal was to demonstrate 3D printing of stainless steel (SS) 316L parts using selective laser melting (SLM) technology. The corrosion resistance of 3D printed SS 316L was investigated using (a) Chronoamperometry (b) Cyclic Potentiodynamic Polarization (CPP) and Electrochemical Impedance Spectroscopy (EIS) and its improved resistance from wrought (conventional) part was also studied. Then the weldability of 3D printed SS 316L to wrought SS 316L was illustrated and finally, the mechanical strength of the weld and the effect of corrosion on weld strength was investigated using uniaxial tensile testing. The results show that 3D printed part compared to the wrought part has a) lower mass loss before and after corrosion, (b) higher pitting potential, and (c) higher charge transfer resistance. The tensile testing of welded dog bone specimens indicates that the 3D printed parts despite being less ductile were observed to have higher weld strength compared to the wrought part. On this basis, metal AM holds great value to be explored further for replacement piping parts owing to their better corrosion resistance and mechanical performance.
ContributorsSampath, Venkata Krishnan (Author) / Azeredo, Bruno (Thesis advisor) / Torres, Cesar (Committee member) / Mu, Bin (Committee member) / Arizona State University (Publisher)
Created2021
192998-Thumbnail Image.png
Description
Integrating advanced materials with innovative manufacturing techniques has propelled the field of additive manufacturing into new frontiers. This study explores the rapid 3D printing of reduced graphene oxide/polymer composites using Micro-Continuous Liquid Interface Production (μCLIP), a cutting-edge technology known for its speed and precision. A printable ink is formulated with

Integrating advanced materials with innovative manufacturing techniques has propelled the field of additive manufacturing into new frontiers. This study explores the rapid 3D printing of reduced graphene oxide/polymer composites using Micro-Continuous Liquid Interface Production (μCLIP), a cutting-edge technology known for its speed and precision. A printable ink is formulated with reduced graphene oxide for μCLIP-based 3D printing. The research focuses on optimizing μCLIP parameters to fabricate reduced graphene composites efficiently. The study encompasses material synthesis, ink formulation and explores the resulting material's structural and electrical properties. The marriage of graphene's unique attributes with the rapid prototyping capabilities of μCLIP opens new avenues for scalable and rapid production in applications such as energy storage, sensors, and lightweight structural components. This work contributes to the evolving landscape of advanced materials and additive manufacturing, offering insights into the synthesis, characterization, and potential applications of 3D printed reduced graphene oxide/polymercomposites.
ContributorsRavishankar, Chayaank Bangalore (Author) / Chen, Xiangfan (Thesis advisor) / Bhate, Dhruv (Committee member) / Azeredo, Bruno (Committee member) / Arizona State University (Publisher)
Created2024