Matching Items (28)
Filtering by

Clear all filters

152463-Thumbnail Image.png
Description
Estimation of complex permittivity of arsenic-doped silicon is the primary topic of discussion in this thesis presentation. The frequency that is of interest is 2.45 GHz, frequency typically used in conventional microwave ovens. The analysis is based on closed-form analytical expressions of cylindrical symmetry. A coaxial/radial line junction with the

Estimation of complex permittivity of arsenic-doped silicon is the primary topic of discussion in this thesis presentation. The frequency that is of interest is 2.45 GHz, frequency typically used in conventional microwave ovens. The analysis is based on closed-form analytical expressions of cylindrical symmetry. A coaxial/radial line junction with the central conductor sheathed in dielectric material, which is As-doped silicon in this case, are analyzed. Electrical and magnetic field equations governing the wave propagation in this setup are formulated by applying the necessary boundary conditions. Input admittance is computed using the fields in the device and reflection coefficient is calculated at the input. This analytical solution is matched to the reflection coefficient acquired by experiments conducted, using VNA as the input source. The contemplation is backed by simulation using High Frequency Structural Simulator, HFSS. Susceptor-assisted microwave heating has been shown to be a faster and easier method of annealing arsenic-doped silicon samples. In that study, it was noticed that the microwave power absorbed by the sample can directly be linked to the heat power required for the annealing process. It probes the validity of the statement that for arsenic-doped silicon the heating curve depends only on its sheet properties and not on the bulk as such and the results presented here gives more insight to it as to why this assumption is true. The results obtained here can be accepted as accurate since it is known that this material is highly conductive and electromagnetic waves do not penetrate in to the material beyond a certain depth, which is given by the skin depth of the material. Hall measurements and four-point-probe measurements are performed on the material in support of the above contemplation.
ContributorsVaradan, Siddharth Kulasekhar (Author) / Alford, Terry L. (Thesis advisor) / Pan, George W (Thesis advisor) / Myhajlenko, Stefan (Committee member) / Arizona State University (Publisher)
Created2014
153369-Thumbnail Image.png
Description
Transparent conductive oxides (TCO) comprise a class of materials that exhibit unique combination of high transparency in the visible region along with high electrical conductivity. TCOs play an important role as transparent electrodes for optoelectronic devices such as solar cell panels, liquid crystal displays, transparent heat mirrors and organic light

Transparent conductive oxides (TCO) comprise a class of materials that exhibit unique combination of high transparency in the visible region along with high electrical conductivity. TCOs play an important role as transparent electrodes for optoelectronic devices such as solar cell panels, liquid crystal displays, transparent heat mirrors and organic light emitting devices (OLED). The most commonly used transparent electrodes in optoelectronic applications is indium tin oxide (ITO) due to its low resistivity (~ 10−4 Ω-cm) and high transmittance (~ 80 %). However, the limited supply of indium and the growing demand for ITO make the resulting fabrication costs prohibitive for future industry. Thus, cost factors have promoted the search for inexpensive materials with good electric-optical properties.

The object of this work is to study the structure-property-processing relationship and optimize a suitable transparent electrode with the intent to optimize them for flexible optoelectronics applications. The work focuses on improved processing of the mixed oxide (indium gallium zinc oxide, IGZO) thin films for superior optical and electrical properties. The study focuses on two different methods of post-deposition annealing-microwave and conventional. The microwave annealing was seen to have the dual advantage of reduced time and lower temperature, as compared to conventional annealing. Another work focuses on an indium free transparent composite electrode (TCE) where a very thin metal layer is inserted between the two TCO layers. A novel Nb2O5/Ag/Nb2O5 multilayered structure can exhibit better electrical and optical properties than a single layered TCO thin film. The focus for low cost alternative leads to a TiO2/metal/TiO2 based TCE. A systematic study was done to understand the effect of metal thickness and substituting different metals (Ag, Cu or Au) on the opto-electrical properties of the TCEs. The TiO2/Ag/TiO2 with mid Ag thickness 9.5 nm has been optimized to have a sheet resistance of 5.7 Ohm/sq. average optical transmittance of 90 % at 550 nm and figure of merit with 61.4 ×10-3 Ω-1. The TCEs showed improved optical and electrical properties when annealed in forming gas and vacuum. These dielectric/metal/dielectric multilayer TCEs have lower total thickness and are more efficient than a single-layer ITO film.
ContributorsDhar, Aritra (Author) / Alford, Terry L. (Thesis advisor) / Petuskey, William (Thesis advisor) / Krause, Stephen (Committee member) / Chizmeshya, Andrew (Committee member) / Arizona State University (Publisher)
Created2015
153330-Thumbnail Image.png
Description
Semiconductor manufacturing economics necessitate the development of innovative device measurement techniques for quick assessment of products. Several novel electrical measurement techniques will be proposed for screening silicon device parameters. The studied parameters range from oxide reliability, and carrier lifetime in MOS capacitors to the power MOSFET reverse recovery.

It will be

Semiconductor manufacturing economics necessitate the development of innovative device measurement techniques for quick assessment of products. Several novel electrical measurement techniques will be proposed for screening silicon device parameters. The studied parameters range from oxide reliability, and carrier lifetime in MOS capacitors to the power MOSFET reverse recovery.

It will be shown that positive charge trapping is a dominant process when thick oxides are stressed through the ramped voltage test (RVT). Exploiting the physics behind positive charge generation/trapping at high electric fields, a fast I-V measurement technique is proposed that can be used to effectively distinguish the ultra-thick oxides' intrinsic quality at low electric fields.

Next, two novel techniques will be presented for studying the carrier lifetime in MOS Capacitor devices. It will be shown that the deep-level transient spectroscopy (DLTS) can be applied to MOS test structures as a swift mean for screening the generation lifetime. Recombination lifetime will also be addressed by introducing the optically-excited MOS technique as a promising tool.

The last part of this work is devoted to the reverse recovery behavior of the body diode of power MOSFETs. The correct interpretation of the LDMOS reverse recovery is challenging and requires special attention. A simple approach will be presented to extract meaningful lifetime values from the reverse recovery of LDMOS body-diodes exploiting their gate voltage and the magnitude of the reverse bias.
ContributorsElhami Khorasani, Arash (Author) / Alford, Terry L. (Thesis advisor) / Goryll, Michael (Committee member) / Theodore, David (Committee member) / Arizona State University (Publisher)
Created2015
155237-Thumbnail Image.png
Description
Thin films have been widely used in various applications. This research focuses on the characterization of novel thin films in the integrated circuits and photovoltaic techniques. The ion implanted layer in silicon can be treated as ion implanted thin film, which plays an essential role in the integrated circuits fabrication.

Thin films have been widely used in various applications. This research focuses on the characterization of novel thin films in the integrated circuits and photovoltaic techniques. The ion implanted layer in silicon can be treated as ion implanted thin film, which plays an essential role in the integrated circuits fabrication. Novel rapid annealing methods, i.e. microwave annealing and laser annealing, are conducted to activate ion dopants and repair the damages, and then are compared with the conventional rapid thermal annealing (RTA). In terms of As+ and P+ implanted Si, the electrical and structural characterization confirms that the microwave and laser annealing can achieve more efficient dopant activation and recrystallization than conventional RTA. The efficient dopant activation in microwave annealing is attributed to ion hopping under microwave field, while the liquid phase growth in laser annealing provides its efficient dopant activation. The characterization of dopants diffusion shows no visible diffusion after microwave annealing, some extent of end range of diffusion after RTA, and significant dopant diffusion after laser annealing.

For photovoltaic applications, an indium-free novel three-layer thin-film structure (transparent composited electrode (TCE)) is demonstrated as a promising transparent conductive electrode for solar cells. The characterization of TCE mainly focuses on its optical and electrical properties. Transfer matrix method for optical transmittance calculation is validated and proved to be a desirable method for predicting transmittance of TCE containing continuous metal layer, and can estimate the trend of transmittance as the layer thickness changes. TiO2/Ag/TiO2 (TAgT) electrode for organic solar cells (OSCs) is then designed using numerical simulation and shows much higher Haacke figure of merit than indium tin oxide (ITO). In addition, TAgT based OSC shows better performance than ITO based OSC when compatible hole transfer layer is employed. The electrical and structural characterization of hole transfer layers (HTLs) in OSCs reveals MoO3 is the compatible HTL for TAgT anode. In the end, the reactive ink printed Ag film for solar cell contact application is studied by characterizing its electromigration lifetime. A percolative model is proposed and validated for predicting the resistivity and lifetime of printed Ag thin films containing porous structure.
ContributorsZhao, Zhao (Author) / Alford, Terry L. (Thesis advisor) / Anwar, Shahriar (Committee member) / Theodore, David (Committee member) / Arizona State University (Publisher)
Created2017
156396-Thumbnail Image.png
Description
Doping and alloying agents are commonly used to engineer the properties of magnetic materials. This study investigates the effects of doping manganese in thin films of Ni80Fe20 (permalloy) and Ni65Fe15Co20 magnetic systems for low power memory technologies, including those that operate at low temperature.

Elemental manganese is anti-ferromagnetic with a

Doping and alloying agents are commonly used to engineer the properties of magnetic materials. This study investigates the effects of doping manganese in thin films of Ni80Fe20 (permalloy) and Ni65Fe15Co20 magnetic systems for low power memory technologies, including those that operate at low temperature.

Elemental manganese is anti-ferromagnetic with a Neel temperature of 100 K. When used as a dopant in a magnetic material, it is found to often align its moment in an antiferromagnetic direction. Thus, the addition of manganese might be expected to reduce the overall saturation magnetization (MS) of the magnetic system. In this study, we show that the use of manganese dopants in Ni80Fe20 (permalloy) and Ni65Fe15Co20 thin films can reduce their saturation magnetization and still retain excellent switching properties.

Magnetic properties and transport properties were determined using Vibrating Sample Magnetometer. A 19% decrease in the MS of (Ni80Fe20)1-xMnx thin films and a 36% decrease for (Ni65Fe15Co20)1-xMnx thin films for dopant levels of x = 30%. The impact of depositing a ruthenium (Ru) under-layer for (Ni65Fe15Co20)1-xMnx system was also studied.

The structural (lattice parameters and phases), surface (roughness and topography) and electrical properties (resistivity and mean free path) of the Mn-doped Ni65Fe15Co20 films were determined with X-Ray Diffraction, Atomic Force Microscopy and Four-Point probe technique respectively.

The properties were analyzed and Ni65Fe15Co20 system with Ru- under-layer with 20 at. % Mn content was found to exhibit the following low-field switching properties at 10 K; MS~700 emu.cm-3, easy axis coercivity ~10 Oe and hard axis coercivity ~5 Oe, easy axis squareness ~0.9 and anisotropy field ~12 Oe, that are deemed useful for low-power memory applications that could be used at cryogenic temperatures.

To determine the transport properties thought these magnetic layers for use in superconductor/ferromagnetic memory structures, a study of the oxidation conditions of Al films was performed in order to produce a reliable aluminum oxide tunnel barrier on top of these films. The production of N-I-F-S (Normal metal-Insulator-Ferromagnet-Superconductor) tunnel junctions will allow for the investigation of the tunneling density of states as a function of ferromagnetic layer thickness, allowing for the determination of important transport parameters relevant to magnetic barrier Josephson junction devices.
ContributorsBoochakravarthy, Ashwin Agathya (Author) / Newman, Nathan (Thesis advisor) / Alford, Terry L. (Committee member) / Singh, Rakesh K. (Committee member) / Chamberlin, Ralph V (Committee member) / Arizona State University (Publisher)
Created2018
155448-Thumbnail Image.png
Description
In this dissertation research, conventional and aberration-corrected (AC) transmission electron microscopy (TEM) techniques were used to evaluate the structural and compositional properties of thin-film semiconductor compounds/alloys grown by molecular beam epitaxy for infrared photo-detection. Imaging, diffraction and spectroscopy techniques were applied to TEM specimens in cross-section geometry to extract information

In this dissertation research, conventional and aberration-corrected (AC) transmission electron microscopy (TEM) techniques were used to evaluate the structural and compositional properties of thin-film semiconductor compounds/alloys grown by molecular beam epitaxy for infrared photo-detection. Imaging, diffraction and spectroscopy techniques were applied to TEM specimens in cross-section geometry to extract information about extended structural defects, chemical homogeneity and interface abruptness. The materials investigated included InAs1-xBix alloys grown on GaSb (001) substrates, InAs/InAs1-xSbx type-II superlattices grown on GaSb (001) substrates, and CdTe-based thin-film structures grown on InSb (001) substrates.

The InAsBi dilute-bismide epitaxial films were grown on GaSb (001) substrates at relatively low growth temperatures. The films were mostly free of extended defects, as observed in diffraction-contrast images, but the incorporation of bismuth was not homogeneous, as manifested by the lateral Bi-composition modulation and Bi-rich surface droplets. Successful Bi incorporation into the InAs matrix was confirmed using lattice expansion measurements obtained from misfit strain analysis of high-resolution TEM (HREM) images.

Analysis of averaged intensity line profiles in HREM and scanning TEM (STEM) images of the Ga-free InAs/InAs1-xSbx type-II strained superlattices indicated slight variations in layer thickness across the superlattice stack. The interface abruptness was evaluated using misfit strain analysis of AC-STEM images, electron energy-loss spectroscopy and 002 dark-field imaging. The compositional profiles of antimony across the superlattices were fitted to a segregation model and revealed a strong antimony segregation probability.

The CdTe/MgxCd1-xTe double-heterostructures were grown with Cd overflux in a dual-chamber molecular beam epitaxy with an ultra-high vacuum transfer loadlock. Diffraction-contrast images showed that the growth temperature had a strong impact on the structural quality of the epilayers. Very abrupt CdTe/InSb interfaces were obtained for epilayers grown at the optimum temperature of 265 °C, and high-resolution imaging using AC-STEM revealed an interfacial transition region with a width of a few monolayers and smaller lattice spacing than either CdTe or InSb.
ContributorsLu, Jing (Author) / Smith, David J. (Thesis advisor) / Alford, Terry L. (Committee member) / Crozier, Peter A. (Committee member) / McCartney, Martha R. (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2017
158128-Thumbnail Image.png
Description
III-V-bismide semiconductor alloys are a class of materials with applications in the mid and long wave infrared spectrum. The quaternary alloy InAsSbBi is attractive because it can be grown lattice-matched to commercially available GaSb substrates, and the adjustment of the Bi and Sb mole fractions enables both lattice constant

III-V-bismide semiconductor alloys are a class of materials with applications in the mid and long wave infrared spectrum. The quaternary alloy InAsSbBi is attractive because it can be grown lattice-matched to commercially available GaSb substrates, and the adjustment of the Bi and Sb mole fractions enables both lattice constant and bandgap to be tuned independently. This dissertation provides a comprehensive study of the surface morphology and the structural and chemical properties of InAsSbBi alloys grown by molecular beam epitaxy.

210 nm thick InAsSbBi layers grown at temperatures from 280 °C to 430 °C on (100) on-axis, (100) offcut 1° to (011), and (100) offcut 4° to (111)A GaSb substrates are investigated using Rutherford back scattering, X-ray diffraction, transmission electron microscopy, Nomarski optical microscopy, atomic force microscopy, and photoluminescence spectroscopy. The results indicate that the layers are coherently strained and contain dilute Bi mole fractions.

Large surface droplets with diameters and densities on the order of 3 µm and 106 cm-2 are observed when the growth is performed with As overpressures around 1%. Preferential orientation of the droplets occurs along the [011 ̅] step edges offcut (100) 1° to (011) substrate. The surface droplets are not observed when the As overpressure is increased to 4%. Small crystalline droplets with diameters and densities on the order of 70 nm and 1010 cm-2 are observed between the large droplets for the growth at 430°C. Analysis of one of the small droplets indicates a misoriented zinc blende structure composed of In, Sb, and Bi, with a 6.543 ± 0.038 Å lattice constant.

Lateral variation in the Bi mole fraction is observed in InAsSbBi grown at high temperature (400 °C, 420 °C) on (100) on-axis and (100) offcut 4° to (111)A substrates, but is not observed for growth at 280 °C or on (100) substrates that are offcut 1° to (011). Improved crystal and optical quality is observed in the high temperature grown InAsSbBi and CuPtB type atomic ordering on the {111}B planes is observed in the low temperature grown InAsSbBi. Strain induced tilt is observed in coherently strained InAsSbBi grown on offcut substrates.
ContributorsKosireddy, Rajeev Reddy (Author) / Johnson, Shane R (Thesis advisor) / Smith, David J. (Committee member) / Alford, Terry L. (Committee member) / Soignard, Emmanuel (Committee member) / Arizona State University (Publisher)
Created2020
158369-Thumbnail Image.png
Description
The chemical, structural, and electrical properties of niobium-silicon, niobium-germanium, and YBCO-dielectric interfaces are characterized. Reduction in the concentration of interfacial defects in these structures can improve the performance of (i) many devices including low-loss coplanar, microstrip, and stripline microwave resonators used in next-generation cryogenic communication, sensor, and quantum information technologies

The chemical, structural, and electrical properties of niobium-silicon, niobium-germanium, and YBCO-dielectric interfaces are characterized. Reduction in the concentration of interfacial defects in these structures can improve the performance of (i) many devices including low-loss coplanar, microstrip, and stripline microwave resonators used in next-generation cryogenic communication, sensor, and quantum information technologies and (ii) layers used in device isolation, inter-wiring dielectrics, and passivation in microwave and Josephson junction circuit fabrication.

Methods were developed to synthesize amorphous-Ge (a-Ge) and homoepitaxial-Si dielectric thin-films with loss tangents of 1–2×10 -6 and 0.6–2×10 -5 at near single-photon powers and sub-Kelvin temperatures (≈40 mK), making them potentially a better choice over undoped silicon and sapphire substrates used in quantum devices. The Nb/Ge interface has 20 nm of chemical intermixing, which is reduced by a factor of four using 10 nm Ta diffusion layers. Niobium coplanar resonators using this structure exhibit reduced microwave losses.

The nature and concentration of defects near Nb-Si interfaces prepared with commonly-used Si surface treatments were characterized. All samples have H, C, O, F, and Cl in the Si within 50 nm of the interface, and electrically active defects with activation energies of 0.147, 0.194, 0.247, 0.339, and 0.556 eV above the valence band maximum (E vbm ), with concentrations dominated by a hole trap at E vbm +0.556 eV (presumably Nb Si ). The optimum surface treatment is an HF etch followed by an in-situ 100 eV Ar ion mill. RCA etches, and higher energy ion milling processes increase the concentration of electrically active defects.

A thin SrTiO 3 buffer layer used in YBa 2 Cu 3 O 7-δ superconductor/high-performance Ba(Zn 1/3 Ta 2/3 )O 3 and Ba(Cd 1/3 Ta 2/3 )O 3 microwave dielectric trilayers improves the structural quality of the layers and results in 90 K superconductor critical temperatures. This advance enables the production of more compact high-temperature superconductor capacitors, inductors, and microwave microstrip and stripline devices.
ContributorsKopas, Cameron Joseph (Author) / Newman, Nathan (Thesis advisor) / Alford, Terry L. (Committee member) / Carpenter, Ray W (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2020