Matching Items (2)
Filtering by

Clear all filters

151984-Thumbnail Image.png
Description
There has been much interest in photoelectrochemical conversion of solar energy in recent years due to its potential for low-–cost, sustainable and renewable production of fuels. Despite the huge potential, there are still a number of technical barriers due to the many constraints needed in order to drive photoelectrochemical reactions

There has been much interest in photoelectrochemical conversion of solar energy in recent years due to its potential for low-–cost, sustainable and renewable production of fuels. Despite the huge potential, there are still a number of technical barriers due to the many constraints needed in order to drive photoelectrochemical reactions such as overall water splitting and the identification of efficient and effective semiconductor materials. To this end, the search for novel semiconductors that can act as light absorbers is still needed. The copper hydroxyphosphate mineral libethenite (CHP), which has a chemical formula of Cu2(OH)PO4, has been recently shown to be active for photocatalytic degradation of methylene blue under UV-–irradiation, indicating that photo-excited electrons and holes can effectively be generated and separated in this material. However, CHP has not been well studied and many of its fundamental electrochemical and photoelectrochemical properties are still unknown. In this work, the synthesis of different morphologies of CHP using hydrothermal synthesis and precipitation methods were explored. Additionally, a preliminary investigation of the relevant fundamental characteristics such as the bandgap, flatband potential, band diagram, electrochemical and photoelectrochemical properties for CHP was performed. Better understanding of the properties of this material may lead to the development of improved catalysts and photocatalysts from natural sources.
ContributorsLi, Man (Author) / Chan, Candace K. (Thesis advisor) / O'Connell, Michael (Committee member) / Crozier, Peter (Committee member) / Arizona State University (Publisher)
Created2013
155391-Thumbnail Image.png
Description
As selenium is toxic at low levels, treatment methods to remove selenium from industrial waste waters are needed. In this work, three groups of sorbent materials were investigated in detail for their effectiveness for selenium and arsenic removal from water: 1) nanostructured carbon-based materials, 2) layered double hydroxide (LDH)-based materials,

As selenium is toxic at low levels, treatment methods to remove selenium from industrial waste waters are needed. In this work, three groups of sorbent materials were investigated in detail for their effectiveness for selenium and arsenic removal from water: 1) nanostructured carbon-based materials, 2) layered double hydroxide (LDH)-based materials, and 3) biopolymer-based sorbents. The materials were investigated in spiked de-ionized water and waters collected from different locations at Salt River Project’s (SRP) Santan Generating Station in Gilbert, AZ. The results show that nanostructured carbon-based materials removed ~80% and up to 100% selenium and arsenic, respectively in spiked DI water. Heat treated layered double hydroxides removed close to 100% removal in selenium and arsenic spiked DI water. Isotherms conducted in spiked DI water fit the Langmuir model and showed a maximum selenate adsorption capacity of 67 mg/g for the calcined LDH powder. Results from SRP waters showed that certain LDH sorbents were effective for removing the selenium, but that higher pH and existence of competing ions affected the removal efficiencies. The functionalized biopolymer sorbent from Crystal Clear Technologies: CCT-149/OCI-B showed good removal efficiencies for both selenate and selenite in DI water. Isotherms conducted in spiked DI water for CCT-149 fit the Langmuir model and showed a maximum selenate adsorption capacity of 90.9 mg/g. Column tests using spiked DI water and waters obtained from SRP wells were investigated using both LDH and CCT-149/OCI-B. Removal of sulfate using chemical pre-treatment of the water with barium chloride resulted in about three times higher selenate loading onto the granular LDH and doubled the water volume that can be treated using CCT-149/OCI-B. The results from the column tests are being used to guide the pilot testing investigating the implementation of LDH sorbents at pilot scale at the Santan plant. The good results in the cooling tower #5 blowdown water and combined discharge waste water of SRP provide valuable information about the efficacy and efficiency of adsorptive media for the removal of selenium. Composites comprising LDH nanosheets with different substrates were successfully synthesized that were able to retain the performance in removing selenate of nanosheet LDH.
ContributorsLi, Man (Author) / Chan, Candace (Thesis advisor) / Lind, Mary Laura (Committee member) / Perreault, Francois (Committee member) / Arizona State University (Publisher)
Created2017