Matching Items (421)
Filtering by

Clear all filters

ContributorsMatthews, Eyona (Performer) / Yoo, Katie Jihye (Performer) / Roubison, Ryan (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-25
ContributorsHoeckley, Stephanie (Performer) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-24
ContributorsMcClain, Katelyn (Performer) / Buringrud, Deanna (Contributor) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-31
154016-Thumbnail Image.png
Description
Carbon nanomaterials have caught tremendous attention in the last few decades due to their unique physical and chemical properties. Tremendous effort has been made to develop new synthesis techniques for carbon nanomaterials and investigate their properties for different applications. In this work, carbon nanospheres (CNSs), carbon foams (CF), and single-walled

Carbon nanomaterials have caught tremendous attention in the last few decades due to their unique physical and chemical properties. Tremendous effort has been made to develop new synthesis techniques for carbon nanomaterials and investigate their properties for different applications. In this work, carbon nanospheres (CNSs), carbon foams (CF), and single-walled carbon nanotubes (SWNTs) were studied for various applications, including water treatment, energy storage, actuators, and sensors.

A facile spray pyrolysis synthesis technique was developed to synthesize individual CNSs with specific surface area (SSA) up to 1106 m2/g. The hollow CNSs showed adsorption of up to 300 mg rhodamine B dye per gram carbon, which is more than 15 times higher than that observed for conventional carbon black. They were also evaluated as adsorbents for removal of arsenate and selenate from water and displayed good binding to both species, outperforming commercial activated carbons for arsenate removal in pH > 8. When evaluated as supercapacitor electrode materials, specific capacitances of up to 112 F/g at a current density of 0.1 A/g were observed. When used as Li-ion battery anode materials, the CNSs achieved a discharge capacity of 270 mAh/g at a current density of 372 mA/g (1C), which is 4-fold higher than that of commercial graphite anode.

Carbon foams were synthesized using direct pyrolysis and had SSA up to 2340 m2/g. When used as supercapacitor electrode materials, a specific capacitance up to 280 F/g was achieved at current density of 0.1 A/g and remained as high as 207 F/g, even at a high current density of 10 A/g.

A printed walking robot was made from common plastic films and coatings of SWNTs. The solid-state thermal bimorph actuators were multifunctional energy transducers powered by heat, light, or electricity. The actuators were also investigated for photo/thermal detection. Electrochemical actuators based on MnO2 were also studied for potential underwater applications.

SWNTs were also used to fabricate printable electrodes for trace Cr(VI) detection, which displayed sensitivity up to 500 nA/ppb for Cr(VI). The limit of detection was shown to be as low as 5 ppb. A flow detection system based on CNT/printed electrodes was also demonstrated.
ContributorsWang, Chengwei, Ph.D (Author) / Chan, Candace K. (Thesis advisor) / Tongay, Sefaattin (Committee member) / Wang, Qing Hua (Committee member) / Seo, Dong (Committee member) / Arizona State University (Publisher)
Created2015
156076-Thumbnail Image.png
Description
Since the discovery of graphene, two dimensional materials (2D materials) have become a focus of interest for material research due to their many unique physical properties embedded in their 2D structure. While they host many exciting potential applications, some of these 2D materials are subject to environmental instability issues induced

Since the discovery of graphene, two dimensional materials (2D materials) have become a focus of interest for material research due to their many unique physical properties embedded in their 2D structure. While they host many exciting potential applications, some of these 2D materials are subject to environmental instability issues induced by interaction between material and gas molecules in air, which poses a barrier to further application and manufacture. To overcome this, it is necessary to understand the origin of material instability and interaction with molecules commonly found in air, as well as developing a reproducible and manufacturing compatible method to post-process these materials to extend their lifetime. In this work, the very first investigation on environmental stability on Te containing anisotropic 2D materials such as GaTe and ZrTe3 is reported. Experimental results have demonstrated that freshly exfoliated GaTe quickly deteriorate in air, during which the Raman spectrum, surface morphology, and surface chemistry undergo drastic changes. Environmental Raman spectroscopy and XPS measurements demonstrate that H2O molecules in air interact strongly on the surface while O2, N2, and inert gases don't show any detrimental effects on GaTe surface. Moreover, the anisotropic properties of GaTe slowly disappear during the aging process. To prevent this gas/material interaction based surface transformation, diazonium based surface functionalization is adopted on these Te based 2D materials. Environmental Raman spectroscopy results demonstrate that the stability of functionalized Te based 2D materials exhibit much higher stability both in ambient and extreme conditions. Meanwhile, PL spectroscopy, angle resolved Raman spectroscopy, atomic force microscopy measurements confirm that many attractive physical properties of the material are not affected by surface functionalization. Overall, these findings unveil the degradation mechanism of Te based 2D materials as well as provide a way to significantly enhance their environmental stability through an inexpensive and reproducible surface chemical functionalization route.
ContributorsYang, Sijie (Author) / Tongay, Sefaattin (Thesis advisor) / Gould, Ian (Thesis advisor) / Trovitch, Ryan (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2017
156608-Thumbnail Image.png
Description
There has been a surge in two-dimensional (2D) materials field since the discovery of graphene in 2004. Recently, a new class of layered atomically thin materials that exhibit in-plane structural anisotropy, such as black phosphorous, transition metal trichalcogenides and rhenium dichalcogenides (ReS2), have attracted great attention. The reduced symmetry in

There has been a surge in two-dimensional (2D) materials field since the discovery of graphene in 2004. Recently, a new class of layered atomically thin materials that exhibit in-plane structural anisotropy, such as black phosphorous, transition metal trichalcogenides and rhenium dichalcogenides (ReS2), have attracted great attention. The reduced symmetry in these novel 2D materials gives rise to highly anisotropic physical properties that enable unique applications in next-gen electronics and optoelectronics. For example, higher carrier mobility along one preferential crystal direction for anisotropic field effect transistors and anisotropic photon absorption for polarization-sensitive photodetectors.

This dissertation endeavors to address two key challenges towards practical application of anisotropic materials. One is the scalable production of high quality 2D anisotropic thin films, and the other is the controllability over anisotropy present in synthesized crystals. The investigation is focused primarily on rhenium disulfide because of its chemical similarity to conventional 2D transition metal dichalcogenides and yet anisotropic nature. Carefully designed vapor phase deposition has been demonstrated effective for batch synthesis of high quality ReS2 monolayer. Heteroepitaxial growth proves to be a feasible route for controlling anisotropic directions. Scanning/transmission electron microscopy and angle-resolved Raman spectroscopy have been extensively applied to reveal the structure-property relationship in synthesized 2D anisotropic layers and their heterostructures.
ContributorsChen, Bin, 1968- (Author) / Tongay, Sefaattin (Thesis advisor) / Bertoni, Mariana (Committee member) / Chang, Lan-Yun (Committee member) / Arizona State University (Publisher)
Created2018
156666-Thumbnail Image.png
Description
Layer structured two dimensional (2D) semiconductors have gained much interest due to their intriguing optical and electronic properties induced by the unique van der Waals bonding between layers. The extraordinary success for graphene and transition metal dichalcogenides (TMDCs) has triggered a constant search for novel 2D semiconductors beyond them. Gallium

Layer structured two dimensional (2D) semiconductors have gained much interest due to their intriguing optical and electronic properties induced by the unique van der Waals bonding between layers. The extraordinary success for graphene and transition metal dichalcogenides (TMDCs) has triggered a constant search for novel 2D semiconductors beyond them. Gallium chalcogenides, belonging to the group III-VI compounds, are a new class of 2D semiconductors that carry a variety of interesting properties including wide spectrum coverage of their bandgaps and thus are promising candidates for next generation electronic and optoelectronic devices. Pushing these materials toward applications requires more controllable synthesis methods and facile routes for engineering their properties on demand.

In this dissertation, vapor phase transport is used to synthesize layer structured gallium chalcogenide nanomaterials with highly controlled structure, morphology and properties, with particular emphasis on GaSe, GaTe and GaSeTe alloys. Multiple routes are used to manipulate the physical properties of these materials including strain engineering, defect engineering and phase engineering. First, 2D GaSe with controlled morphologies is synthesized on Si(111) substrates and the bandgap is significantly reduced from 2 eV to 1.7 eV due to lateral tensile strain. By applying vertical compressive strain using a diamond anvil cell, the band gap can be further reduced to 1.4 eV. Next, pseudo-1D GaTe nanomaterials with a monoclinic structure are synthesized on various substrates. The product exhibits highly anisotropic atomic structure and properties characterized by high-resolution transmission electron microscopy and angle resolved Raman and photoluminescence (PL) spectroscopy. Multiple sharp PL emissions below the bandgap are found due to defects localized at the edges and grain boundaries. Finally, layer structured GaSe1-xTex alloys across the full composition range are synthesized on GaAs(111) substrates. Results show that GaAs(111) substrate plays an essential role in stabilizing the metastable single-phase alloys within the miscibility gaps. A hexagonal to monoclinic phase crossover is observed as the Te content increases. The phase crossover features coexistence of both phases and isotropic to anisotropic structural transition.

Overall, this work provides insights into the controlled synthesis of gallium chalcogenides and opens up new opportunities towards optoelectronic applications that require tunable material properties.
ContributorsCai, Hui, Ph.D (Author) / Tongay, Sefaattin (Thesis advisor) / Dwyer, Christian (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2018
ContributorsHur, Jiyoun (Performer) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-01
135204-Thumbnail Image.png
Description
The vastly growing field of supercomputing is in dire need of a new measurement system to optimize JMRAM (Josephson junction magnetoresistive random access memory) devices. To effectively measure these devices, an ultra-low-noise, low cost cryogenic dipping probe with a dynamic voltage range is required. This dipping probe has been designed

The vastly growing field of supercomputing is in dire need of a new measurement system to optimize JMRAM (Josephson junction magnetoresistive random access memory) devices. To effectively measure these devices, an ultra-low-noise, low cost cryogenic dipping probe with a dynamic voltage range is required. This dipping probe has been designed by ASU with <100 nVp-p noise, <10 nV offsets, 10 pV to 16 mV voltage range, and negligible thermoelectric drift. There is currently no other research group or company that can currently match both these low noise levels and wide voltage range. Two different dipping probes can be created with these specifications: one for high-use applications and one for low-use applications. The only difference between these probes is the outer shell; the high-use application probe has a shell made of G-10 fiberglass for a higher price, and the low-use application probe has a shell made of AISI 310 steel for a lower price. Both types of probes can be assembled in less than 8 hours for less than $2,500, requiring only soldering expertise. The low cost and short time to create these probes makes wide profit margins possible. The market for these cryogenic dipping probes is currently untapped, as most research groups and companies that use these probes build their own, which allows for rapid business growth. These potential consumers can be easily reached by marketing these probes at superconducting conferences. After several years of selling >50 probes, mass production can easily become possible by hiring several technicians, and still maintaining wide profit margins.
ContributorsHudson, Brooke Ashley (Author) / Adams, James (Thesis director) / Anwar, Shahriar (Committee member) / Materials Science and Engineering Program (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136455-Thumbnail Image.png
Description
Although wind turbine bearings are designed to operate 18-20 years, in the recent years premature failure among these bearings has caused this life to reduce to as low as a few months to a year. One of the leading causes of premature failure called white structure flaking is a mechanism

Although wind turbine bearings are designed to operate 18-20 years, in the recent years premature failure among these bearings has caused this life to reduce to as low as a few months to a year. One of the leading causes of premature failure called white structure flaking is a mechanism that was first cited in literature decades ago but not much is understood about it even today. The cause of this mode of failure results from the initiation of white etched cracks (WECs). In this report, different failure mechanisms, especially premature failure mechanisms that were tested and analyzed are demonstrated as a pathway to understanding this phenomenon. Through the use of various tribometers, samples were tested in diverse and extreme conditions in order to study the effect of these different operational conditions on the specimen. Analysis of the tested samples allowed for a comparison of the microstructure alterations in the tested samples to the field bearings affected by WSF.
ContributorsSharma, Aman (Author) / Foy, Joseph (Thesis director) / Adams, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05