Matching Items (1,584)
Filtering by

Clear all filters

151315-Thumbnail Image.png
Description
The energy band gap of a semiconductor material critically influences the operating wavelength of an optoelectronic device. Realization of any desired band gap, or even spatially graded band gaps, is important for applications such as lasers, light-emitting diodes (LEDs), solar cells, and detectors. Compared to thin films, nanowires offer greater

The energy band gap of a semiconductor material critically influences the operating wavelength of an optoelectronic device. Realization of any desired band gap, or even spatially graded band gaps, is important for applications such as lasers, light-emitting diodes (LEDs), solar cells, and detectors. Compared to thin films, nanowires offer greater flexibility for achieving a variety of alloy compositions. Furthermore, the nanowire geometry permits simultaneous incorporation of a wide range of compositions on a single substrate. Such controllable alloy composition variation can be realized either within an individual nanowire or between distinct nanowires across a substrate. This dissertation explores the control of spatial composition variation in ternary alloy nanowires. Nanowires were grown by the vapor-liquid-solid (VLS) mechanism using chemical vapor deposition (CVD). The gas-phase supersaturation was considered in order to optimize the deposition morphology. Composition and structure were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD). Optical properties were investigated through photoluminescence (PL) measurements. The chalcogenides selected as alloy endpoints were lead sulfide (PbS), cadmium sulfide (CdS), and cadmium selenide (CdSe). Three growth modes of PbS were identified, which included contributions from spontaneously generated catalyst. The resulting wires were found capable of lasing with wavelengths over 4000 nm, representing the longest known wavelength from a sub-wavelength wire. For CdxPb1-xS nanowires, it was established that the cooling process significantly affects the alloy composition and structure. Quenching was critical to retain metastable alloys with x up to 0.14, representing a new composition in nanowire form. Alternatively, gradual cooling caused phase segregation, which created heterostructures with light emission in both the visible and mid-infrared regimes. The CdSSe alloy system was fully explored for spatial composition variation. CdSxSe1-x nanowires were grown with composition variation across the substrate. Subsequent contact printing preserved the designed composition gradient and led to the demonstration of a variable wavelength photodetector device. CdSSe axial heterostructure nanowires were also achieved. The growth process involved many variables, including a deliberate and controllable change in substrate temperature. As a result, both red and green light emission was detected from single nanowires.
ContributorsNichols, Patricia (Author) / Ning, Cun-Zheng (Thesis advisor) / Carpenter, Ray (Committee member) / Bennett, Peter (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2012
151937-Thumbnail Image.png
Description
Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in typical Er-doped materials is less than 1 x 1020 cm-3,

Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in typical Er-doped materials is less than 1 x 1020 cm-3, thus limiting the maximum optical gain to a few dB/cm, too small to be useful for integrated photonics applications. Er compounds could potentially solve this problem since they contain much higher Er density. So far the existing Er compounds suffer from short lifetime and strong upconversion effects, mainly due to poor quality of crystals produced by various methods of thin film growth and deposition. This dissertation explores a new Er compound: erbium chloride silicate (ECS, Er3(SiO4)2Cl ) in the nanowire form, which facilitates the growth of high quality single crystals. Growth methods for such single crystal ECS nanowires have been established. Various structural and optical characterizations have been carried out. The high crystal quality of ECS material leads to a long lifetime of the first excited state of Er3+ ions up to 1 ms at Er density higher than 1022 cm-3. This Er lifetime-density product was found to be the largest among all Er containing materials. A unique integrating sphere method was developed to measure the absorption cross section of ECS nanowires from 440 to 1580 nm. Pump-probe experiments demonstrated a 644 dB/cm signal enhancement from a single ECS wire. It was estimated that such large signal enhancement can overcome the absorption to result in a net material gain, but not sufficient to compensate waveguide propagation loss. In order to suppress the upconversion process in ECS, Ytterbium (Yb) and Yttrium (Y) ions are introduced as substituent ions of Er in the ECS crystal structure to reduce Er density. While the addition of Yb ions only partially succeeded, erbium yttrium chloride silicate (EYCS) with controllable Er density was synthesized successfully. EYCS with 30 at. % Er was found to be the best. It shows the strongest PL emission at 1.5 μm, and thus can be potentially used as a high gain material.
ContributorsYin, Leijun (Author) / Ning, Cun-Zheng (Thesis advisor) / Chamberlin, Ralph (Committee member) / Yu, Hongbin (Committee member) / Menéndez, Jose (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2013
150556-Thumbnail Image.png
Description
In this work, I worked on the synthesis and characterization of nanowires and belts, grown using different materials, in Chemical Vapor Deposition (CVD) system with catalytic growth method. Through this thesis, I utilized the Photoluminescence (PL), Secondary Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) analyses to

In this work, I worked on the synthesis and characterization of nanowires and belts, grown using different materials, in Chemical Vapor Deposition (CVD) system with catalytic growth method. Through this thesis, I utilized the Photoluminescence (PL), Secondary Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) analyses to find out the properties of Erbium Chloride Silicate (ECS) and two segment CdS-CdSe samples. In the first part of my research, growth of very new material, Erbium Chloride Silicate (ECS), in form of core/shell Si/ECS and pure ECS nanowires, was demonstrated. This new material has very fascinating properties for new Si based photonic devices. The Erbium density in those nanowires is which is very high value compared to the other Erbium doped materials. It was shown that the luminescence peaks of ECS nanowires are very sharp and stronger than their counterparts. Furthermore, both PL and XRD peaks get sharper and stronger as growth temperature increases and this shows that crystalline quality of ECS nanowires gets better with higher temperature. In the second part, I did a very detail research for growing two segment axial nanowires or radial belts and report that the structure type mostly depends on the growth temperature. Since our final step is to create white light LEDs using single axial nanowires which have three different regions grown with distinct materials and give red, green and blue colors simultaneously, we worked on growing CdS-CdSe nanowires or belts for the first step of our aim. Those products were successfully grown and they gave two luminescence peaks with maximum 160 nm wavelength separation depending on the growth conditions. It was observed that products become more likely belt once the substrate temperature increases. Also, dominance between VLS and VS is very critical to determine the shape of the products and the substitution of CdS by CdSe is very effective; hence, CdSe growth time should be chosen accordingly. However, it was shown two segmented products can be synthesized by picking the right conditions and with very careful analyses. We also demonstrated that simultaneous two colors lasing from a single segmented belt structures is possible with strong enough-pumping-power.
ContributorsTurkdogan, Sunay (Author) / Ning, Cun-Zheng (Thesis advisor) / Tao, Meng (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
173937-Thumbnail Image.png
Description

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty times before they cannot divide any further. Researchers later found that the cause of the Hayflick Limit is the shortening of telomeres, or portions of DNA at the ends of chromosomes that slowly degrade as cells replicate. Hayflick used his research on normal embryonic cells to develop a vaccine for polio, and from HayflickÕs published directions, scientists developed vaccines for rubella, rabies, adenovirus, measles, chickenpox and shingles.

Created2014-07-20
173939-Thumbnail Image.png
Description

Although best known for his work with the fruit fly, for which he earned a Nobel Prize and the title "The Father of Genetics," Thomas Hunt Morgan's contributions to biology reach far beyond genetics. His research explored questions in embryology, regeneration, evolution, and heredity, using a variety of approaches.

Created2007-09-25
173947-Thumbnail Image.jpg
Created1935
173887-Thumbnail Image.png
Description

Frank R. Lillie was born in Toronto, Canada, on 27 June 1870. His mother was Emily Ann Rattray and his father was George Waddell Little, an accountant and co-owner of a wholesale drug company. While in high school Lillie took up interests in entomology and paleontology but went

Frank R. Lillie was born in Toronto, Canada, on 27 June 1870. His mother was Emily Ann Rattray and his father was George Waddell Little, an accountant and co-owner of a wholesale drug company. While in high school Lillie took up interests in entomology and paleontology but went to the University of Toronto with the aim of studying ministry. He slowly became disillusioned with this career choice and decided to major in the natural sciences. It was during his senior year that he developed his lifelong interest in embryology. Graduating with a BA in 1891 Lillie then moved to the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, to work and study with Charles Otis Whitman, the founding director of the MBL. Lillie collected and studied cell lineage side-by-side with some of the most prominent embryologists of the time: Edmund B. Wilson, Edwin G. Conklin, and Aaron L. Treadwell. Along with his cell lineage studies, Whitman guided Lillie to work on the question of how blastomeres contributed to the formation of organs in fresh water clams.

Created2009-07-22
173889-Thumbnail Image.png
Description

Samuel Randall Detwiler was an embryologist who studied neural development in embryos and vertebrate retinas. He discovered evidence for the relationship between somites and spinal ganglia, that transplanted limbs can be controlled by foreign ganglia, and the plasticity of ganglia in response to limb transplantations. He also extensively

Samuel Randall Detwiler was an embryologist who studied neural development in embryos and vertebrate retinas. He discovered evidence for the relationship between somites and spinal ganglia, that transplanted limbs can be controlled by foreign ganglia, and the plasticity of ganglia in response to limb transplantations. He also extensively studied vertebrate retinas during and after embryonic development. Detwiler's work established many principles studied in later limb transplantation experiments and was identified by Viktor Hamburger as an important bridge between his and Ross Granville Harrison's research.

Created2007-11-01
173890-Thumbnail Image.png
Description

Ernest Everett Just was an early twentieth century American experimental embryologist involved in research at the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, and the Stazione Zoologica in Naples, Italy. Just was known for simple but elegant experiments that supported the "fertilizing" theory of Frank R. Lillie and served

Ernest Everett Just was an early twentieth century American experimental embryologist involved in research at the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, and the Stazione Zoologica in Naples, Italy. Just was known for simple but elegant experiments that supported the "fertilizing" theory of Frank R. Lillie and served as an antagonist to Jacques Loeb's work with artificial parthenogenesis. Just's many experiments with marine invertebrates showed that the egg surface, or ectoplasm, plays an important role in the fertilization and development of eggs.

Created2010-06-16
173891-Thumbnail Image.png
Description

Edward B. Lewis studied embryonic development in Drosophila, including the discovery of the cis-trans test for recessive genes, and the identification of the bithorax complex and its role in development in Drosophila. He shared the 1995 Nobel Prize in Physiology or Medicine with Christiane Nüsslein-Volhard and Eric F. Wieschaus

Edward B. Lewis studied embryonic development in Drosophila, including the discovery of the cis-trans test for recessive genes, and the identification of the bithorax complex and its role in development in Drosophila. He shared the 1995 Nobel Prize in Physiology or Medicine with Christiane Nüsslein-Volhard and Eric F. Wieschaus for work on genetic control of early embryonic development.

Created2007-11-11