Matching Items (25)
Filtering by

Clear all filters

152021-Thumbnail Image.png
Description
Metal hydride materials have been intensively studied for hydrogen storage applications. In addition to potential hydrogen economy applications, metal hydrides offer a wide variety of other interesting properties. For example, hydrogen-dominant materials, which are hydrides with the highest hydrogen content for a particular metal/semimetal composition, are predicted to display high-temperature

Metal hydride materials have been intensively studied for hydrogen storage applications. In addition to potential hydrogen economy applications, metal hydrides offer a wide variety of other interesting properties. For example, hydrogen-dominant materials, which are hydrides with the highest hydrogen content for a particular metal/semimetal composition, are predicted to display high-temperature superconductivity. On the other side of the spectrum are hydrides with small amounts of hydrogen (0.1 - 1 at.%) that are investigated as viable magnetic, thermoelectric or semiconducting materials. Research of metal hydride materials is generally important to gain fundamental understanding of metal-hydrogen interactions in materials. Hydrogenation of Zintl phases, which are defined as compounds between an active metal (alkali, alkaline earth, rare earth) and a p-block metal/semimetal, were attempted by a hot sintering method utilizing an autoclave loaded with gaseous hydrogen (< 9 MPa). Hydride formation competes with oxidative decomposition of a Zintl phase. The oxidative decomposition, which leads to a mixture of binary active metal hydride and p-block element, was observed for investigated aluminum (Al) and gallium (Ga) containing Zintl phases. However, a new phase Li2Al was discovered when Zintl phase precursors were synthesized. Using the single crystal x-ray diffraction (SCXRD), the Li2Al was found to crystallize in an orthorhombic unit cell (Cmcm) with the lattice parameters a = 4.6404(8) Å, b = 9.719(2) Å, and c = 4.4764(8) Å. Increased demand for materials with improved properties necessitates the exploration of alternative synthesis methods. Conventional metal hydride synthesis methods, like ball-milling and autoclave technique, are not responding to the demands of finding new materials. A viable alternative synthesis method is the application of high pressure for the preparation of hydrogen-dominant materials. Extreme pressures in the gigapascal ranges can open access to new metal hydrides with novel structures and properties, because of the drastically increased chemical potential of hydrogen. Pressures up to 10 GPa can be easily achieved using the multi-anvil (MA) hydrogenations while maintaining sufficient sample volume for structure and property characterization. Gigapascal MA hydrogenations using ammonia borane (BH3NH3) as an internal hydrogen source were employed in the search for new hydrogen-dominant materials. Ammonia borane has high gravimetric volume of hydrogen, and additionally the thermally activated decomposition at high pressures lead to a complete hydrogen release at reasonably low temperature. These properties make ammonia borane a desired hydrogen source material. The missing member Li2PtH6 of the series of A2PtH6 compounds (A = Na to Cs) was accessed by employing MA technique. As the known heavier analogs, the Li2PtH6 also crystallizes in a cubic K2PtCl6-type structure with a cell edge length of 6.7681(3) Å. Further gigapascal hydrogenations afforded the compounds K2SiH6 and Rb2SiH6 which are isostructural to Li2PtH6. The cubic K2SiH6 and Rb2SiH6 are built from unique hypervalent SiH62- entities with the lattice parameters of 7.8425(9) and 8.1572(4) Å, respectively. Spectroscopic analysis of hexasilicides confirmed the presence of hypervalent bonding. The Si-H stretching frequencies at 1550 cm-1 appeared considerably decreased in comparison with a normal-valent (2e2c) Si-H stretching frequencies in SiH4 at around 2200 cm-1. However, the observed stretching modes in hypervalent hexasilicides were in a reasonable agreement with Ph3SiH2- (1520 cm-1) where the hydrogen has the axial (3e4c bonded) position in the trigoal bipyramidal environment.
ContributorsPuhakainen, Kati (Author) / Häussermann, Ulrich (Thesis advisor) / Seo, Dong (Thesis advisor) / Kouvetakis, John (Committee member) / Wolf, George (Committee member) / Arizona State University (Publisher)
Created2013
151208-Thumbnail Image.png
Description
Carbon lacks an extended polyanionic chemistry which appears restricted to carbides with C4-, C22-, and C34- moieties. The most common dimeric anion of carbon atoms is C22- with a triple bond between the two carbon atoms. Compounds containing the dicarbide anion can be regarded as salts of acetylene C2H2 (ethyne)

Carbon lacks an extended polyanionic chemistry which appears restricted to carbides with C4-, C22-, and C34- moieties. The most common dimeric anion of carbon atoms is C22- with a triple bond between the two carbon atoms. Compounds containing the dicarbide anion can be regarded as salts of acetylene C2H2 (ethyne) and hence are also called acetylides or ethynides. Inspired by the fact that molecular acetylene undergoes pressure induced polymerization to polyacetylene above 3.5 GPa, it is of particular interest to study the effect of pressure on the crystal structures of acetylides as well. In this work, pressure induced polymerization was attempted with two simple metal acetylides, Li2C2 and CaC2. Li2C2 and CaC2 have been synthesized by a direct reaction of the elements at 800ºC and 1200ºC, respectively. Initial high pressure investigations were performed inside Diamond anvil cell (DAC) at room temperature and in situ Raman spectroscopic measurement were carried out up to 30 GPa. Near 15 GPa, Li2C2 undergoes a transition into a high pressure acetylide phase and around 25 GPa this phase turns amorphous. CaC2 is polymorphic at ambient pressure. Monoclinic CaC2-II does not show stability at pressures above 1 GPa. Tetragonal CaC2-I is stable up to at least 12 GPa above which possibly a pressure-induced distortion occurs. At around 18 GPa, CaC2 turns amorphous. In a subsequent series of experiments both Li2C2 and CaC2 were compressed to 10 GPa in a multi anvil (MA) device and heated to temperatures between 300 and 1100oC for Li2C2, and 300°C to 900°C for CaC2. The recovered products were analyzed by PXRD and Raman spectroscopy. It has been observed that reactions at temperature higher than 900°C were very difficult to control and hitherto only short reaction times could be applied. For Li2C2, a new phase, free of starting material was found at 1100°C. Both the PXRD patterns and Raman spectra of products at 1100oC could not be matched to known forms of carbon or carbides. For CaC2 new reflections in PXRD were visible at 900ºC with the starting material phase.
ContributorsKonar, Sumit (Author) / Häussermann, Ulrich (Thesis advisor) / Seo, Dong (Thesis advisor) / Steimle, Timothy (Committee member) / Wolf, George (Committee member) / Arizona State University (Publisher)
Created2012
Description
The study of the mechanical behavior of nanocrystalline metals using microelectromechanical systems (MEMS) devices lies at the intersection of nanotechnology, mechanical engineering and material science. The extremely small grains that make up nanocrystalline metals lead to higher strength but lower ductility as compared to bulk metals. Effects of strain-rate dependence

The study of the mechanical behavior of nanocrystalline metals using microelectromechanical systems (MEMS) devices lies at the intersection of nanotechnology, mechanical engineering and material science. The extremely small grains that make up nanocrystalline metals lead to higher strength but lower ductility as compared to bulk metals. Effects of strain-rate dependence on the mechanical behavior of nanocrystalline metals are explored. Knowing the strain rate dependence of mechanical properties would enable optimization of material selection for different applications and lead to lighter structural components and enhanced sustainability.
ContributorsHall, Andrea Paulette (Author) / Rajagopalan, Jagannathan (Thesis director) / Liao, Yabin (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
131374-Thumbnail Image.png
Description
This paper investigates Surface Mechanical Attrition Treatment (SMAT) and the influence of treatment temperature and initial sample surface finish on the corrosion resistance of 7075-T651 aluminum alloy. Ambient SMAT was performed on AA7075 samples polished to 80-grit initial surface roughness. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used

This paper investigates Surface Mechanical Attrition Treatment (SMAT) and the influence of treatment temperature and initial sample surface finish on the corrosion resistance of 7075-T651 aluminum alloy. Ambient SMAT was performed on AA7075 samples polished to 80-grit initial surface roughness. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used to characterize the corrosion behavior of samples before and after SMAT. Electrochemical tests indicated an improved corrosion resistance after application of SMAT process. The observed improvements in corrosion properties are potentially due to microstructural changes in the material surface induced by SMAT which encouraged the formation of a passive oxide layer. Further testing and research are required to understand the corrosion related effects of cryogenic SMAT and initial-surface finish as the COVID-19 pandemic inhibited experimentation plans.
ContributorsDeorio, Jordan Anthony (Author) / Solanki, Kiran (Thesis director) / Rajagopalan, Jagannathan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132169-Thumbnail Image.png
Description
In materials science, developing GeSn alloys is major current research interest concerning the production of efficient Group-IV photonics. These alloys are particularly interesting because the development of next-generation semiconductors for ultrafast (terahertz) optoelectronic communication devices could be accomplished through integrating these novel alloys with industry-standard silicon technology. Unfortunately, incorporating a

In materials science, developing GeSn alloys is major current research interest concerning the production of efficient Group-IV photonics. These alloys are particularly interesting because the development of next-generation semiconductors for ultrafast (terahertz) optoelectronic communication devices could be accomplished through integrating these novel alloys with industry-standard silicon technology. Unfortunately, incorporating a maximal amount of Sn into a Ge lattice has been difficult to achieve experimentally. At ambient conditions, pure Ge and Sn adopt cubic (α) and tetragonal (β) structures, respectively, however, to date the relative stability and structure of α and β phase GeSn alloys versus percent composition Sn has not been thoroughly studied. In this research project, computational tools were used to perform state-of-the-art predictive quantum simulations to study the structural, bonding and energetic trends in GeSn alloys in detail over a range of experimentally accessible compositions. Since recent X-Ray and vibrational studies have raised some controversy about the nanostructure of GeSn alloys, the investigation was conducted with ordered, random and clustered alloy models.
By means of optimized geometry analysis, pure Ge and Sn were found to adopt the alpha and beta structures, respectively, as observed experimentally. For all theoretical alloys, the corresponding αphase structure was found to have the lowest energy, for Sn percent compositions up to 90%. However at 50% Sn, the correspondingβ alloy energies are predicted to be only ~70 meV higher. The formation energy of α-phase alloys was found to be positive for all compositions, whereas only two beta formation energies were negative. Bond length distributions were analyzed and dependence on Sn incorporation was found, perhaps surprisingly, not to be directly correlated with cell volume. It is anticipated that the data collected in this project may help to elucidate observed complex vibrational properties in these systems.
ContributorsLiberman-Martin, Zoe Elise (Author) / Chizmeshya, Andrew (Thesis director) / Sayres, Scott (Committee member) / Wolf, George (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
171542-Thumbnail Image.png
Description
Achieving a viable process for advanced manufacturing of ceramics and metal-ceramic composites is a sought-after goal in a wide range of fields including electronics and sensors for harsh environments, microelectromechanical devices, energy storage materials, and structural materials, among others. In this dissertation, the processing, and manufacturing of ceramics and ceramic

Achieving a viable process for advanced manufacturing of ceramics and metal-ceramic composites is a sought-after goal in a wide range of fields including electronics and sensors for harsh environments, microelectromechanical devices, energy storage materials, and structural materials, among others. In this dissertation, the processing, and manufacturing of ceramics and ceramic composites are addressed, specifically, a process for three-dimensional (3D) printing of polymer-derived ceramics (PDC), and a process for low-cost manufacturing as well as healing of metal-ceramic composites is demonstrated.Three-dimensional printing of ceramics is enabled by dispensing the preceramic polymer at the tip of a moving nozzle into a gel that can reversibly switch between fluid and solid states, and subsequently thermally cross-linking the entire printed part “at once” while still inside the same gel was demonstrated. The solid gel converts to fluid at the tip of the moving nozzle, allowing the polymer solution to be dispensed and quickly returns to a solid state to maintain the geometry of the printed polymer both during printing and the subsequent high-temperature (160 °C) cross-linking. After retrieving the cross-linked part from the gel, the green body is converted to ceramic by high-temperature pyrolysis. This scalable process opens new opportunities for low-cost and high-speed production of complex three-dimensional ceramic parts and will be widely used for high-temperature and corrosive environment applications, including electronics and sensors, microelectromechanical systems, energy, and structural applications. Metal-ceramic composites are technologically significant as structural and functional materials and are among the most expensive materials to manufacture and repair. Hence, technologies for self-healing metal-ceramic composites are important. Here, a concept to fabricate and heal co-continuous metal-ceramic composites at room temperature were demonstrated. The composites were fabricated by infiltration of metal (here Copper) into a porous alumina preform (fabricated by freeze-casting) through electroplating; a low-temperature and low-cost process for the fabrication of such composites. Additionally, the same electroplating process was demonstrated for healing damages such as grooves and cracks in the original composite, such that the healed composite recovered its strength by more than 80%. Such technology may be expanded toward fully autonomous self-healing structures.
ContributorsMahmoudi, Mohammadreza (Author) / Minary-Jolandan, Majid (Thesis advisor) / Rajagopalan, Jagannathan (Committee member) / Cramer, Corson (Committee member) / Kang, Wonmo (Committee member) / Bhate, Dhruv (Committee member) / Arizona State University (Publisher)
Created2022
190956-Thumbnail Image.png
Description
This thesis presents a study of Boron Nitride (BN) and Copper (Cu)/BN multilayer thin films in terms of synthesis, chemical, structural, morphological, and mechanical properties characterization. In this study, the influence of Ar/N₂ flow rate in synthesizing stoichiometric BN thin films via magnetron sputtering was investigated initially. Post magnetron

This thesis presents a study of Boron Nitride (BN) and Copper (Cu)/BN multilayer thin films in terms of synthesis, chemical, structural, morphological, and mechanical properties characterization. In this study, the influence of Ar/N₂ flow rate in synthesizing stoichiometric BN thin films via magnetron sputtering was investigated initially. Post magnetron sputtering, the crystalline nature and B:N stoichiometric ratio of deposited thin films were investigated by X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) respectively. Thicknesses revealed by ellipsometry analysis for nearly stoichiometric B:N thin films and their corresponding deposition times were used for estimating BN interlayer deposition times during the deposition of Cu/BN multilayer thin films. To characterize the microstructure of the synthesized Cu/BN multilayer thin films, XRD and scanning electron microscopy (SEM) have been used. Finally, a comparison of nanoindentation measurements on pure Cu and Cu/BN multilayer thin films having different number of BN interlayers were used for studying the influence of BN interlayers on improving mechanical properties such as hardness and elastic modulus. The results show that the stoichiometry of BN thin films is dependent on the Ar/N₂ flow rate during magnetron sputtering. An optimal Ar/N₂ flow rate of 13:5 during deposition was required to achieve an approximately 1:1 B:N stoichiometry. Grazing incidence and powder XRD analysis on these stoichiometric BN thin films deposited at room temperature did not reveal a phase match when compared to hexagonal boron nitride (h-BN) and cubic boron nitride (c-BN) reference XRD patterns. For a BN thin film deposition time of 5 hours, a thickness of approximately 40 nm was achieved, as revealed by ellipsometry. XRD and microstructure analysis using scanning electron microscopy (SEM) on pure Cu and Cu/BN thin films showed that the Cu grain size in Cu/BN thin films is much finer than pure Cu thin films. Interestingly, nanoindentation measurements on pure Cu and Cu/BN thin films having a similar overall thickness demonstrated that hardness and Young’s modulus of the films were improved significantly when BN interlayers are present.
ContributorsCaner, Sumeyye (Author) / Rajagopalan, Jagannathan (Thesis advisor) / Oswald, Jay (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2023
168311-Thumbnail Image.png
Description
The increasing demand for structural materials with superior mechanical properties has provided a strong impetus to the discovery of novel materials, and innovations in processing techniques to improve the properties of existing materials. Methods like severe plastic deformation (SPD) and surface mechanical attrition treatment (SMAT) have led to significant enhancement

The increasing demand for structural materials with superior mechanical properties has provided a strong impetus to the discovery of novel materials, and innovations in processing techniques to improve the properties of existing materials. Methods like severe plastic deformation (SPD) and surface mechanical attrition treatment (SMAT) have led to significant enhancement in the strength of traditional structural materials like Al and Fe based alloys via microstructural refinement. However, the nanocrystalline materials produced using these techniques exhibit poor ductility due to the lack of effective strain hardening mechanisms, and as a result the well-known strength-ductility trade-off persists. To overcome this trade-off, researchers have proposed the concept of heterostructured materials, which are composed of domains ranging in size from a few nanometers to several micrometers. Over the last two decades, there has been intense research on the development of new methods to synthesize heterostructured materials. However, none of these methods is capable of providing precise control over key microstructural parameters such as average grain size, grain morphology, and volume fraction and connectivity of coarse and fine grains. Due to the lack of microstructural control, the relationship between these parameters and the deformation behavior of heterostructured materials cannot be investigated systematically, and hence designing heterostructured materials with optimized properties is currently infeasible. This work aims to address this scientific and technological challenge and is composed of two distinct but interrelated parts. The first part concerns the development of a broadly applicable synthesis method to produce heterostructured metallic films with precisely defined architectures. This method exploits two forms of film growth (epitaxial and Volmer-Weber) to generate heterostructured metallic films. The second part investigates the effect of different microstructural parameters on the deformation behavior of heterostructured metallic films with the aim of elucidating their structure-property relationships. Towards this end, freestanding heterostructured Fe films with different architectures were fabricated and uniaxially deformed using MEMS stages. The results from these experiments are presented and their implications for the mechanical properties of heterostructured materials is discussed.
ContributorsBerlia, Rohit (Author) / Rajagopalan, Jagannathan (Thesis advisor) / Sieradzki, Karl (Committee member) / Peralta, Pedro (Committee member) / Crozier, Peter (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2021
154679-Thumbnail Image.png
Description
Mechanical behavior of metallic thin films at room temperature (RT) is relatively well characterized. However, measuring the high temperature mechanical properties of thin films poses several challenges. These include ensuring uniformity in sample temperature and minimizing temporal fluctuations due to ambient heat loss, in addition to difficulties involved in mechanical

Mechanical behavior of metallic thin films at room temperature (RT) is relatively well characterized. However, measuring the high temperature mechanical properties of thin films poses several challenges. These include ensuring uniformity in sample temperature and minimizing temporal fluctuations due to ambient heat loss, in addition to difficulties involved in mechanical testing of microscale samples. To address these issues, we designed and analyzed a MEMS-based high temperature tensile testing stage made from single crystal silicon. The freestanding thin film specimens were co-fabricated with the stage to ensure uniaxial loading. Multi-physics simulations of Joule heating, incorporating both radiation and convection heat transfer, were carried out using COMSOL to map the temperature distribution across the stage and the specimen. The simulations were validated using temperature measurements from a thermoreflectance microscope.
ContributorsEswarappa Prameela, Suhas (Author) / Rajagopalan, Jagannathan (Thesis advisor) / Wang, Liping (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2016
154995-Thumbnail Image.png
Description
Electromigration (EM) has been a serious reliability concern in microelectronics packaging for close to half a century now. Whenever the challenges of EM are overcome newer complications arise such as the demand for better performance due to increased miniaturization of semiconductor devices or the problems faced due to undesirable properties

Electromigration (EM) has been a serious reliability concern in microelectronics packaging for close to half a century now. Whenever the challenges of EM are overcome newer complications arise such as the demand for better performance due to increased miniaturization of semiconductor devices or the problems faced due to undesirable properties of lead-free solders. The motivation for the work is that there exists no fully computational modeling study on EM damage in lead-free solders (and also in lead-based solders). Modeling techniques such as one developed here can give new insights on effects of different grain features and offer high flexibility in varying parameters and study the corresponding effects. In this work, a new computational approach has been developed to study void nucleation and initial void growth in solders due to metal atom diffusion. It involves the creation of a 3D stochastic mesoscale model of the microstructure of a polycrystalline Tin structure. The next step was to identify regions of current crowding or ‘hot-spots’. This was done through solving a finite difference scheme on top of the 3D structure. The nucleation of voids due to atomic diffusion from the regions of current crowding was modeled by diffusion from the identified hot-spot through a rejection free kinetic Monte-Carlo scheme. This resulted in the net movement of atoms from the cathode to the anode. The above steps of identifying the hotspot and diffusing the atoms at the hot-spot were repeated and this lead to the initial growth of the void. This procedure was studied varying different grain parameters. In the future, the goal is to explore the effect of more grain parameters and consider other mechanisms of failure such as the formation of intermetallic compounds due to interstitial diffusion and dissolution of underbump metallurgy.
ContributorsKarunakaran, Deepak (Thesis advisor) / Jiao, Yang (Committee member) / Chawla, Nikhilesh (Committee member) / Rajagopalan, Jagannathan (Committee member) / Arizona State University (Publisher)
Created2016