Matching Items (8)
Filtering by

Clear all filters

152336-Thumbnail Image.png
Description
Flow measurement has always been one of the most critical processes in many industrial and clinical applications. The dynamic behavior of flow helps to define the state of a process. An industrial example would be that in an aircraft, where the rate of airflow passing the aircraft is used to

Flow measurement has always been one of the most critical processes in many industrial and clinical applications. The dynamic behavior of flow helps to define the state of a process. An industrial example would be that in an aircraft, where the rate of airflow passing the aircraft is used to determine the speed of the plane. A clinical example would be that the flow of a patient's breath which could help determine the state of the patient's lungs. This project is focused on the flow-meter that are used for airflow measurement in human lungs. In order to do these measurements, resistive-type flow-meters are commonly used in respiratory measurement systems. This method consists of passing the respiratory flow through a fluid resistive component, while measuring the resulting pressure drop, which is linearly related to volumetric flow rate. These types of flow-meters typically have a low frequency response but are adequate for most applications, including spirometry and respiration monitoring. In the case of lung parameter estimation methods, such as the Quick Obstruction Method, it becomes important to have a higher frequency response in the flow-meter so that the high frequency components in the flow are measurable. The following three types of flow-meters were: a. Capillary type b. Screen Pneumotach type c. Square Edge orifice type To measure the frequency response, a sinusoidal flow is generated with a small speaker and passed through the flow-meter that is connected to a large, rigid container. True flow is proportional to the derivative of the pressure inside the container. True flow is then compared with the measured flow, which is proportional to the pressure drop across the flow-meter. In order to do the characterization, two LabVIEW data acquisition programs have been developed, one for transducer calibration, and another one that records flow and pressure data for frequency response testing of the flow-meter. In addition, a model that explains the behavior exhibited by the flow-meter has been proposed and simulated. This model contains a fluid resistor and inductor in series. The final step in this project was to approximate the frequency response data to the developed model expressed as a transfer function.
ContributorsHu, Jianchen (Author) / Macia, Narciso (Thesis advisor) / Pollat, Scott (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2013
157157-Thumbnail Image.png
Description
Among the alternative processes for the traditional distillation, adsorption and membrane separations are the two most promising candidates and metal-organic frameworks (MOFs) are the new material candidate as adsorbent or membrane due to their high surface area, various pore sizes, and highly tunable framework functionality. This dissertation presents an investigation

Among the alternative processes for the traditional distillation, adsorption and membrane separations are the two most promising candidates and metal-organic frameworks (MOFs) are the new material candidate as adsorbent or membrane due to their high surface area, various pore sizes, and highly tunable framework functionality. This dissertation presents an investigation of the formation process of MOF membrane, framework defects, and two-dimensional (2D) MOFs, aiming to explore the answers for three critical questions: (1) how to obtain a continuous MOF membrane, (2) how defects form in MOF framework, and (3) how to obtain isolated 2D MOFs. To solve the first problem, the accumulated protons in the MOF synthesis solution is proposed to be the key factor preventing the continuous growth among Universitetet I Oslo-(UiO)-66 crystals. The hypothesis is verified by the growth reactivation under the addition of deprotonating agent. As long as the protons were sufficiently coordinated by the deprotonating agent, the continuous growth of UiO-66 is guaranteed. Moreover, the modulation effect can impact the coordination equilibrium so that an oriented growth of UiO-66 film was achieved in membrane structures. To find the answer for the second problem, the defect formation mechanism in UiO-66 was investigated and the formation of missing-cluster (MC) defects is attributed to the partially-deprotonated ligands. Experimental results show the number of MC defects is sensitive to the addition of deprotonating agent, synthesis temperature, and reactant concentration. Pore size distribution allows an accurate and convenient characterization of the defects. Results show that these defects can cause significant deviations of its pore size distribution from the perfect crystal. The study of the third questions is based on the established bi-phase synthesis method, a facile synthesis method is adopted for the production of high quality 2D MOFs in large scale. Here, pyridine is used as capping reagent to prevent the interplanar hydrogen bond formation. Meanwhile, formic acid and triethylamine as modulator and deprotonating agent to balance the anisotropic growth, crystallinity, and yield in the 2D MOF synthesis. As a result, high quality 2D zinc-terephthalic acid (ZnBDC) and copper-terephthalic acid (CuBDC) with extraordinary aspect ratio samples were successfully synthesized.
ContributorsShan, Bohan (Author) / Mu, Bin (Thesis advisor) / Forzani, Erica (Committee member) / Dai, Lenore (Committee member) / Lin, Jerry (Committee member) / Liu, Jingyue (Committee member) / Arizona State University (Publisher)
Created2019
135876-Thumbnail Image.png
Description
Many tasks that humans do from day to day are taken for granted in term of appreciating their true complexity. Humans are the only species on the planet that have developed such an in-depth means of auditory communication. Recreating the mechanisms in the brain that recognize speech patterns is no

Many tasks that humans do from day to day are taken for granted in term of appreciating their true complexity. Humans are the only species on the planet that have developed such an in-depth means of auditory communication. Recreating the mechanisms in the brain that recognize speech patterns is no easy task. This paper compares and contrasts various algorithms used in modern day ASR systems, and focuses primarily on ASR systems in resource constrained environments. The Green colored blocks in Figure 1 will be focused on in greater detail throughout this paper, they are the key to building an exceptional ASR system. Deep Neural Networks (DNNs) are the clear and current leader among ASR technologies; all research in this field is currently revolving around this method. Although DNNs are very effective, many older methods of ASR are used often due to the complexities involved with DNNs; these difficulties include the large amount of hardware resources as well as development resources, such as engineers and money, required for this method.
ContributorsPetersen, Casey Alexander (Author) / Csavina, Kristine (Thesis director) / Pollat, Scott (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
158067-Thumbnail Image.png
Description
Soft materials are matters that can easily deform from their original shapes and structures under thermal or mechanical stresses, and they range across various groups of materials including liquids, foams, gels, colloids, polymers, and biological substances. Although soft materials already have numerous applications with each of their unique characteristics, integrating

Soft materials are matters that can easily deform from their original shapes and structures under thermal or mechanical stresses, and they range across various groups of materials including liquids, foams, gels, colloids, polymers, and biological substances. Although soft materials already have numerous applications with each of their unique characteristics, integrating materials to achieve complementary functionalities is still a growing need for designing advanced applications of complex requirements. This dissertation explores a unique approach of utilizing intermolecular interactions to accomplish not only the multifunctionality from combined materials but also their tailored properties designed for specific tasks. In this work, multifunctional soft materials are explored in two particular directions, ionic liquids (ILs)-based mixtures and interpenetrating polymer network (IPN).

First, ILs-based mixtures were studied to develop liquid electrolytes for molecular electronic transducers (MET) in planetary exploration. For space missions, it is challenging to operate any liquid electrolytes in an extremely low-temperature environment. By tuning intermolecular interactions, the results demonstrated a facile method that has successfully overcome the thermal and transport barriers of ILs-based mixtures at extremely low temperatures. Incorporation of both aqueous and organic solvents in ILs-based electrolyte systems with varying types of intermolecular interactions are investigated, respectively, to yield optimized material properties supporting not only MET sensors but also other electrochemical devices with iodide/triiodide redox couple targeting low temperatures.

Second, an environmentally responsive hydrogel was synthesized via interpenetrating two crosslinked polymer networks. The intermolecular interactions facilitated by such an IPN structure enables not only an upper critical solution temperature (UCST) transition but also a mechanical enhancement of the hydrogel. The incorporation of functional units validates a positive swelling response to visible light and also further improves the mechanical properties. This studied IPN system can serve as a promising route in developing “smart” hydrogels utilizing visible light as a simple, inexpensive, and remotely controllable stimulus.

Over two directions across from ILs to polymeric networks, this work demonstrates an effective strategy of utilizing intermolecular interactions to not only develop multifunctional soft materials for advanced applications but also discover new properties beyond their original boundaries.
ContributorsXu, Yifei (Author) / Dai, Lenore L. (Thesis advisor) / Forzani, Erica (Committee member) / Holloway, Julianne (Committee member) / Jiang, Hanqing (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2020
158761-Thumbnail Image.png
Description
Global industrialization and urbanization have led to increased levels of air pollution. The costs to society have come in the form of environmental damage, healthcare expenses, lost productivity, and premature mortality. Measuring pollutants is an important task for identifying its sources, warning individuals about dangerous exposure levels, and providing epidemiologists

Global industrialization and urbanization have led to increased levels of air pollution. The costs to society have come in the form of environmental damage, healthcare expenses, lost productivity, and premature mortality. Measuring pollutants is an important task for identifying its sources, warning individuals about dangerous exposure levels, and providing epidemiologists with data to link pollutants with diseases. Current methods for monitoring air pollution are inadequate though. They rely on expensive, complex instrumentation at limited fixed monitoring sites that do not capture the true spatial and temporal variation. Furthermore, the fixed outdoor monitoring sites cannot warn individuals about indoor air quality or exposure to chemicals at worksites. Recent advances in manufacturing and computing technology have allowed new classes of low-cost miniature gas sensor to emerge as possible alternatives. For these to be successful however, there must be innovations in the sensors themselves that improve reliability, operation, and their stability and selectivity in real environments. Three novel gas sensor solutions are presented. The first is the development of a wearable personal exposure monitor using all commercially available components, including two metal oxide semiconductor gas sensors. The device monitors known asthma triggers: ozone, total volatile organic compounds, temperature, humidity, and activity level. Primary focus is placed on the ozone sensor, which requires special circuits, heating algorithm, and calibration to remove temperature and humidity interferences. Eight devices are tested in multiple field tests. The second is the creation of a new compact optoelectronic gas sensing platform using colorimetric microdroplets printed on the surface of a complementary-metal-oxide-semiconductor (CMOS) imager. The nonvolatile liquid microdroplets provide a homogeneous, uniform environment that is ideal for colorimetric reactions and lensless optical measurements. To demonstrate one type of possible indicating system gaseous ammonia is detected by complexation with Cu(II). The third project continues work on the CMOS imager optoelectronic platform and develops a more robust sensing system utilizing hydrophobic aerogel particles. Ammonia is detected colorimetrically by its reaction with a molecular dye, with additives and surface treatments enhancing uniformity of the printed films. Future work presented at the end describes a new biological particle sensing system using the CMOS imager.
ContributorsMallires, Kyle Reed (Author) / Tao, Nongjian (Thesis advisor) / Forzani, Erica (Thesis advisor) / Wiktor, Peter (Committee member) / Wang, Di (Committee member) / Alford, Terry (Committee member) / Xian, Xiaojun (Committee member) / Arizona State University (Publisher)
Created2020
158711-Thumbnail Image.png
Description
There are increasing demands for gas sensors in air quality and human health monitoring applications. The qualifying sensor technology must be highly sensitive towards ppb level gases of interest, such as acetylene (C2H2), hydrogen sulfide (H2S), and volatile organic compounds. Among the commercially available sensor technologies, conductometric gas sensors with

There are increasing demands for gas sensors in air quality and human health monitoring applications. The qualifying sensor technology must be highly sensitive towards ppb level gases of interest, such as acetylene (C2H2), hydrogen sulfide (H2S), and volatile organic compounds. Among the commercially available sensor technologies, conductometric gas sensors with nanoparticles of oxide semiconductors as sensing materials hold significant advantages in cost, size, and cross-compatibility. However, semiconductor gas sensors must overcome some major challenges in thermal stability, sensitivity, humidity interference, and selectivity before potential widespread adoption in air quality and human health monitoring applications.

The focus of this dissertation is to tackle these issues by optimizing the composition and the morphology of the nanoparticles, and by innovating the structure of the sensing film assembled with the nanoparticles. From the nanoparticles perspective, the thermal stability of tin oxide nanoparticles with different Al dopant concentrations was studied, and the results indicate that within certain range of doping concentration, the dopants segregated at the grain surface can improve the thermal stability by stabilizing the grain boundaries.

From the sensing film perspective, a novel self-assembly approach was developed for copper oxide nanosheets and the sensor response towards H2S gas was revealed to decrease monotonically by more than 60% as the number of layers increase from 1 to 300 (thickness: 0.03-10 μm). Moreover, a sensing mechanism study on the humidity influence on H2S detection was performed to gain more understandings of the role of the hydroxyl group in the surface reaction, and humidity independent response was observed in the monolayer film at 325 ℃. With a more precise deposition tool (Langmuir-Blodgett trough), monolayer film of zinc oxide nanowires sensitized with gold catalyst was prepared, and highly sensitive and specific response to C2H2 in the ppb range was observed. Furthermore, the effect of surface topography of the monolayer film on stabilizing noble metal catalyst, and the sensitization mechanism of gold were investigated.

Lastly, a semiconductor sensor array was developed to analyze the composition of gases dissolved in transformer oil to demonstrate the industrial application of this sensor technology.
ContributorsMiao, Jiansong (Author) / Lin, Jerry Y.S. (Thesis advisor) / Forzani, Erica (Committee member) / Liu, Jingyue (Committee member) / Li, Jian (Committee member) / Arizona State University (Publisher)
Created2020
161823-Thumbnail Image.png
Description
While understanding of failure mechanisms for polymeric composites have improved vastly over recent decades, the ability to successfully monitor early failure and subsequent prevention has come of much interest in recent years. One such method to detect these failures involves the use of mechanochemistry, a field of chemistry in which

While understanding of failure mechanisms for polymeric composites have improved vastly over recent decades, the ability to successfully monitor early failure and subsequent prevention has come of much interest in recent years. One such method to detect these failures involves the use of mechanochemistry, a field of chemistry in which chemical reactions are initiated by deforming highly-strained bonds present in certain moieties. Mechanochemistry is utilized in polymeric composites as a means of stress-sensing, utilizing weak and force-responsive chemical bonds to activate signals when embedded in a composite material. These signals can then be detected to determine the amount of stress applied to a composite and subsequent potential damage that has occurred due to the stress. Among mechanophores, the cinnamoyl moiety is capable of stress response through fluorescent signal under mechanical load. The cinnamoyl group is fluorescent in its initial state and capable of undergoing photocycloaddition in the presence of ultraviolet (UV) light, followed by subsequent reversion when under mechanical load. Signal generation before the yield point of the material provides a form of damage precursor detection.This dissertation explores the implementation of mechanophores in novel approaches to overcome some of the many challenges within the mechanochemistry field. First, new methods of mechanophore detection were developed through utilization of Fourier transform infrared (FTIR) spectroscopy signals and in-situ stress sensing. Developing an in-situ testing method provided a two-fold advantage of higher resolution and more time efficiency over current methods involving image analysis with a fluorescent microscope. Second, bonding mechanophores covalently into the backbone of an epoxy matrix mitigated property loss due to mechanophore incorporation. This approach was accomplished through functionalizing either the resin or hardener component of the matrix. Finally, surface functionalization of fibers was performed and allowed for unaltered fabrication procedures of composite layups as well as provided increased adhesion at the fiber-matrix interphase. The developed materials could enable a simple, non-invasive, and non-detrimental structural health monitoring approach.
ContributorsGunckel, Ryan Patrick (Author) / Dai, Lenore (Thesis advisor) / Chattopadhyay, Aditi (Thesis advisor) / Lind Thomas, Mary Laura (Committee member) / Liu, Yongming (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2021
151764-Thumbnail Image.png
Description
Spirometry is a type of pulmonary function test that measures the amount of air volume and the speed of air flow from a patient's breath in order to assess lung function. The goal of this project is to develop and validate a mobile spirometer technology based on a differential pressure

Spirometry is a type of pulmonary function test that measures the amount of air volume and the speed of air flow from a patient's breath in order to assess lung function. The goal of this project is to develop and validate a mobile spirometer technology based on a differential pressure sensor. The findings in this paper are used in a larger project that combines the features of a capnography device and a spirometer into a single mobile health unit known as the capno-spirometer. The following paper discusses the methods, experiments, and prototypes that were developed and tested in order to create a robust and accurate technology for all of the spirometry functions within the capno-spirometer. The differential pressure sensor is set up with one inlet measuring the pressure inside the spirometer tubing and the other inlet measuring the ambient pressure of the environment. The inlet measuring the inside of the tubing is very sensitive to its orientation and position with respect to the path of the air flow. It is found that taking a measurement from the center of the flow is 50% better than from the side wall. The sensor inlet is optimized at 37 mm from the mouthpiece inlet. The unit is calibrated by relating the maximum pressure sensor voltage signal to the peak expiratory flow rate (PEF) taken during a series of spirometry tests. In conclusion, this relationship is best represented as a quadratic function and a calibration equation is computed to provide a flow rate given a voltage change. The flow rates are used to calculate the four main spirometry parameters: PEF, FVC, FEV1, and FER. These methods are then referenced with the results from a commercial spirometer for validation. After validation, the pressure-based spirometry technology is proven to be both robust and accurate.
ContributorsMiller, Dylan (Author) / Forzani, Erica (Thesis advisor) / Trimble, Steve (Committee member) / Xian, Xiaojun (Committee member) / Arizona State University (Publisher)
Created2013