Matching Items (776)
Filtering by

Clear all filters

Description
Current Li-ion battery technologies are limited by the low capacities of theelectrode materials and require developments to meet stringent performance demands for future energy storage devices. Electrode materials that alloy with Li, such as Si, are one of the most promising alternatives for Li-ion battery anodes due to their high capacities. Tetrel (Si,

Current Li-ion battery technologies are limited by the low capacities of theelectrode materials and require developments to meet stringent performance demands for future energy storage devices. Electrode materials that alloy with Li, such as Si, are one of the most promising alternatives for Li-ion battery anodes due to their high capacities. Tetrel (Si, Ge, Sn) clathrates are a class of host-guest crystalline structures in which Tetrel elements form a cage framework and encapsulate metal guest atoms. These structures can form with defects such as framework/guest atom substitutions and vacancies which result in a wide design space for tuning materials properties. The goal of this work is to establish structure property relationships within the context of Li-ion battery anode applications. The type I Ba 8 Al y Ge 46-y clathrates are investigated for their electrochemical reactions with Li and show high capacities indicative of alloying reactions. DFT calculations show that Li insertion into the framework vacancies is favorable, but the migration barriers are too high for room temperature diffusion. Then, guest free type I clathrates are investigated for their Li and Na migration barriers. The results show that Li migration in the clathrate frameworks have low energy barriers (0.1- 0.4 eV) which suggest the possibility for room temperature diffusion. Then, the guest free, type II Si clathrate (Na 1 Si 136 ) is synthesized and reversible Li insertion into the type II Si clathrate structure is demonstrated. Based on the reasonable capacity (230 mAh/g), low reaction voltage (0.30 V) and low volume expansion (0.21 %), the Si clathrate could be a promising insertion anode for Li-ion batteries. Next, synchrotron X-ray measurements and pair distribution function (PDF) analysis are used to investigate the lithiation pathways of Ba 8 Ge 43 , Ba 8 Al 16 Ge 30 , Ba 8 Ga 15 Sn 31 and Na 0.3 Si 136 . The results show that the Ba-clathrates undergo amorphous phase transformations which is distinct from their elemental analogues (Ge, Sn) which feature crystalline lithiation pathways. Based on the high capacities and solid-solution reaction mechanism, guest-filled clathrates could be promising precursors to form alloying anodes with novel electrochemical properties. Finally, several high temperature (300-550 °C) electrochemical synthesis methods for Na-Si and Na-Ge clathrates are demonstrated in a cell using a Na β’’-alumina solid electrolyte.
ContributorsDopilka, Andrew (Author) / Chan, Candace K (Thesis advisor) / Zhuang, Houlong (Committee member) / Peng, Xihong (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2021
161813-Thumbnail Image.png
Description
Oxygen transfer reactions are central to many catalytic processes, including those underlying automotive exhaust emissions control and clean energy conversion. The catalysts used in these applications typically consist of metal nanoparticles dispersed on reducible oxides (e.g., Pt/CeO2), since reducible oxides can transfer their lattice oxygen to reactive adsorbates at the

Oxygen transfer reactions are central to many catalytic processes, including those underlying automotive exhaust emissions control and clean energy conversion. The catalysts used in these applications typically consist of metal nanoparticles dispersed on reducible oxides (e.g., Pt/CeO2), since reducible oxides can transfer their lattice oxygen to reactive adsorbates at the metal-support interface. There are many outstanding questions regarding the atomic and nanoscale spatial variation of the Pt/CeO2 interface, Pt metal particle, and adjacent CeO2 oxide surface during catalysis. To this end, a range of techniques centered around aberration-corrected environmental transmission electron microscopy (ETEM) were developed and employed to visualize and characterize the atomic-scale structural behavior of CeO2-supported Pt catalysts under reaction conditions (in situ) and/or during catalysis (operando). A model of the operando ETEM reactor was developed to simulate the gas and temperature profiles during conditions of catalysis. Most importantly, the model provides a tool for relating the reactant conversion measured with spectroscopy to the reaction rate of the catalyst that is imaged on the TEM grid. As a result, this work has produced a truly operando TEM methodology, since the structure observed during an experiment can be directly linked to quantitative chemical kinetics of the same catalyst. This operando ETEM approach was leveraged to investigate structure-activity relationships for CO oxidation over Pt/CeO2 catalysts. Correlating atomic-level imaging with catalytic turnover frequency reveals a direct relationship between activity and dynamic structural behavior that (a) destabilizes the supported Pt particle, (b) marks an enhanced rate of oxygen vacancy creation and annihilation, and (c) leads to increased strain and reduction in the surface of the CeO2 support. To further investigate the structural meta-stability (i.e., fluxionality) of 1 – 2 nm CeO2-supported Pt nanoparticles, time-resolved in situ AC-ETEM was employed to visualize the catalyst’s dynamical behavior with high spatiotemporal resolution. Observations are made under conditions relevant to the CO oxidation and water-gas shift (WGS) reactions. Finally, deep learning-based convolutional neural networks were leveraged to develop novel denoising techniques for ultra-low signal-to-noise images of catalytic nanoparticles.
ContributorsVincent, Joshua Lawrence (Author) / Crozier, Peter A (Thesis advisor) / Liu, Jingyue (Committee member) / Muhich, Christopher L (Committee member) / Nannenga, Brent L (Committee member) / Singh, Arunima K (Committee member) / Arizona State University (Publisher)
Created2021
161815-Thumbnail Image.png
Description
Nanocrystalline (NC) materials are of great interest to researchers due to their multitude of properties such as exceptional strength and radiation resistance owing to their high fraction of grain boundaries that act as defect sinks for radiation-induced defects, provided they are microstructurally stable. In this dissertation, radiation effects in microstructurally

Nanocrystalline (NC) materials are of great interest to researchers due to their multitude of properties such as exceptional strength and radiation resistance owing to their high fraction of grain boundaries that act as defect sinks for radiation-induced defects, provided they are microstructurally stable. In this dissertation, radiation effects in microstructurally stable bulk NC copper (Cu)- tantalum (Ta) alloys engineered with uniformly dispersed Ta nano-precipitates are systematically probed. Towards this, both ex-situ and in-situ irradiations using heavy (self) ion, helium ion, and concurrent dual ion beams (He+Au) followed by isochronal annealing inside TEM were utilized to understand radiation tolerance and underlying mechanisms of microstructure evolution in stable NC alloys. With systematic self-ion irradiation, the high density of tantalum nanoclusters in Cu-10at.%Ta were observed to act as stable sinks in suppressing radiation hardening, in addition to stabilizing the grain boundaries; while the large incoherent precipitates experienced ballistic mixing and dissolution at high doses. Interestingly, the alloy exhibited a microstructure self-healing mechanism, where with a moderate thermal input, this dissolved tantalum eventually re-precipitated, thus replenishing the sink density. The high stability of these tantalum nanoclusters is attributed to the high positive enthalpy of mixing of tantalum in copper which also acted as a critical driving force against atomic mixing to facilitate re-precipitation of tantalum nanoclusters. Furthermore, these nanoclusters proved to be effective trapping sites for helium, thus sequestering helium into isolated small bubbles and aid in increasing the overall swelling threshold of the alloy. The alloy was then compositionally optimized to reduce the density of large incoherent precipitates without compromising on the grain size and nanocluster density (Cu-3at.%Ta) which resulted in a consistent and more promising response to high dose self-ion irradiation. In-situ helium and dual beam irradiation coupled with isochronal annealing till 723 K, also revealed a comparable microstructural stability and enhanced ability of Cu-3Ta in controlling bubble growth and suppressing swelling compared to Cu-10Ta indicating a promising improvement in radiation tolerance in the optimized composition. Overall, this work helps advancing the current understanding of radiation tolerance in stable nanocrystalline alloys and aid developing design strategies for engineering radiation tolerant materials with stable interfaces.
ContributorsSrinivasan, Soundarya (Author) / Solanki, Kiran (Thesis advisor) / Peralta, Pedro (Committee member) / Alford, Terry (Committee member) / Darling, Kristopher (Committee member) / Arizona State University (Publisher)
Created2021
161840-Thumbnail Image.png
Description
Soft thermal interface materials (TIMs) are critical for improving the thermal management of advanced microelectronic devices. Despite containing high thermal conductivity filler materials, TIM performance is limited by thermal resistances between fillers, filler-matrix, and external contact resistance. Recently, room-temperature liquid metals (LMs) started to be adapted as an alternative TIM

Soft thermal interface materials (TIMs) are critical for improving the thermal management of advanced microelectronic devices. Despite containing high thermal conductivity filler materials, TIM performance is limited by thermal resistances between fillers, filler-matrix, and external contact resistance. Recently, room-temperature liquid metals (LMs) started to be adapted as an alternative TIM for their low thermal resistance and fluidic nature. However, LM-based TIMs face challenges due to their low viscosity, non-wetting qualities, chemical reactivity, and corrosiveness towards aluminum.To address these concerns, this dissertation research investigates fundamental LM properties and assesses their utility for developing multiphase LM composites with strong thermal properties. Augmentation of LM with gallium oxide and air capsules lead to LM-base foams with improved spreading and patterning. Gallium oxides are responsible for stabilizing LM foam structures which is observed through electron microscopy, revealing a temporal evolution of air voids after shear mixing in air. The presence of air bubbles and oxide fragments in LM decreases thermal conductivity while increasing its viscosity as the shear mixing time is prolonged. An overall mechanism for foam generation in LM is presented in two stages: 1) oxide fragment accumulation and 2) air bubble entrapment and propagation. To avoid the low thermal conductivity air content, mixing of non-reactive particles of tungsten or silicon carbide (SiC) into LM forms paste-like LM-based mixtures that exhibit tunable high thermal conductivity 2-3 times beyond the matrix material. These filler materials remain chemically stable and do not react with LM over time while suspended. Gallium oxide-mediated wetting mechanisms for these non-wetting fillers are elucidated in oxygen rich and deficient environments. Three-phase composites consisting of LM and Ag-coated SiC fillers dispersed in a noncuring silicone oil matrix address LM-corrosion related issues. Ag-coated SiC particles enable improved wetting of the LM, and the results show that applied pressure is necessary for bridging of these LM-coated particles to improve filler thermal resistance. Compositional tuning between the fillers leads to thermal improvements in this multiphase composite. The results of this dissertation work aim to advance our current understanding of LMs and how to design LM-based composite materials for improved TIMs and other soft thermal applications.
ContributorsKong, Wilson (Author) / Wang, Robert Y (Thesis advisor) / Rykaczewski, Konrad (Thesis advisor) / Green, Matthew D (Committee member) / Tongay, Sefaattin (Committee member) / Arizona State University (Publisher)
Created2021
161844-Thumbnail Image.png
Description
Thermal management is a critical aspect of microelectronics packaging and often centers around preventing central processing units (CPUs) and graphics processing units (GPUs) from overheating. As the need for power going into these processors increases, so too does the need for more effective thermal management strategies. One such strategy is

Thermal management is a critical aspect of microelectronics packaging and often centers around preventing central processing units (CPUs) and graphics processing units (GPUs) from overheating. As the need for power going into these processors increases, so too does the need for more effective thermal management strategies. One such strategy is to utilize additive manufacturing to fabricate heat sinks with bio-inspired and cellular structures and is the focus of this thesis. In this study, a process was developed for manufacturing the copper alloy CuNi2SiCr on the 100w Concept Laser Mlab laser powder bed fusion 3D printer to obtain parts that were 94% dense, while dealing with challenges of low absorptivity in copper and its high potential for oxidation. The developed process was then used to manufacture and test heat sinks with traditional pin and fin designs to establish a baseline cooling effect, as determined from tests conducted on a substrate, CPU and heat spreader assembly. Two additional heat sinks were designed, the first of these being bio-inspired and the second incorporating Triply Periodic Minimal Surface (TPMS) cellular structures, with the aim of trying to improve the cooling effect relative to commercial heat sinks. The results showed that the pure copper commercial pin-design heat sink outperformed the additive manufactured (AM) pin-design heat sink under both natural and forced convection conditions due to its approximately tenfold higher thermal conductivity, but that the gap in performance could be bridged using the bio-inspired and Schwarz-P heat sink designs developed in this work and is an encouraging indicator that further improvements could be obtained with improved alloys, heat treatments and even more innovative designs.
ContributorsYaple, Jordan Marie (Author) / Bhate, Dhruv (Thesis advisor) / Azeredo, Bruno (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2021
161861-Thumbnail Image.png
Description
This qualitative study begins with the supposition that all schools have cultural biases and that even within the same school culture, people see things differently. Internal biases can negatively affect the approach to school improvement. To disrupt these culture bound realities, parent perspectives were sought out to provide an alternate

This qualitative study begins with the supposition that all schools have cultural biases and that even within the same school culture, people see things differently. Internal biases can negatively affect the approach to school improvement. To disrupt these culture bound realities, parent perspectives were sought out to provide an alternate view into Zaharis Elementary School. Two critical assumptions were built into this study. One, that the vast reservoir of cultural knowledge among parents could be tapped, and two, once that cultural knowledge was uncovered, they the schoolpeople (1986) of Zaharis Elementary could do something with it to make a difference in the lives of children. A focus group framework was employed over a series of parent group interviews to explore the following research question: What are the multiple realities expressed by parents and what similarities and differences exist across these realities? Focus group discussions were transcribed, participant responses were coded, and a thorough and comprehensive analysis revealed that the majority of parent perceptions expressed fell within three emergent parent realities that were defined and presented. One, parents perceived that teaching and learning were social processes that support the development of student voice and nurture rich relationships. Two, parents perceived that learning through inquiry elevated class work to purposeful student learning, activates critical thinking, and fosters authentic real-world experience. And the third parent perception was teaching is teamwork and all members of the classroom community were teachers and learners.
ContributorsOliver, Michael (Author) / Marsh, Josephine P (Thesis advisor) / Serafini, Frank (Committee member) / Moses, Lindsey (Committee member) / Arizona State University (Publisher)
Created2021
161698-Thumbnail Image.png
Description
2D materials with reduced symmetry have gained great interest in the past decade due to the arising quantum properties introduced by the structural asymmetry. A particular example is called 2D Janus materials. Named after Roman god Janus with two faces, Janus materials have different chemical compositions on the two sides

2D materials with reduced symmetry have gained great interest in the past decade due to the arising quantum properties introduced by the structural asymmetry. A particular example is called 2D Janus materials. Named after Roman god Janus with two faces, Janus materials have different chemical compositions on the two sides of materials, leading to a structure with broken mirror symmetry. Electronegativity difference of the facial elements induces a built-in polarization field pointing out of the plane, which has driven a lot of theory predictions on Rashba splitting, high- temperature ferromagnetism, Skyrmion formation, and so on. Previously reported experimental synthesis of Janus 2D materials relies on high-temperature processing, which limits the crystallinity of as produced 2D layers. In this dissertation, I present a room temperature selective epitaxial atomic re- placement (SEAR) method to convert CVD-grown transition metal dichalcogenides (TMDs) into a Janus structure. Chemically reactive H2 plasma is used to selectively etch off the top layer of chalcogen atoms and the introduction of replacement chalco- gen source in-situ allows for the achievement of Janus structures in one step at room temperature. It is confirmed that the produced Janus monolayers possess high crys- tallinity and good excitonic properties. Moving forward, I show the fabrication of lateral and vertical heterostructures of Janus materials, which are predicted to show exotic properties because of the intrinsic polarization field. To efficiently screen other kinds of interesting Janus structures, a new plasma chamber is designed to allow in-situ optical measurement on the target monolayer during the SEAR process. Successful conversion is seen on mechanically exfoliated MoSe2 and WSe2, and insights into reaction kinetics are gain from Raman spectra evolution. Using the monitoring ability, Janus SNbSe is synthesized for the first time. It’s also demonstrated that the overall crystallinity of as produced Janus monolayer SWSe and SMoSe are correlated with the source of monolayer TMDs. Overall, the synthesis of the Janus monolayers using the described method paves the way to the production of highly crystalline Janus materials, and with the in-situ monitoring ability, a deeper understanding of the mechanism is reached. This will accelerate future exploration of other Janus materials synthesis, and confirmation and discovery of their exciting quantum properties.
ContributorsQin, Ying (Author) / Tongay, Sefaattin (Thesis advisor) / Zhuang, Houlong (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2021
158861-Thumbnail Image.png
Description
The purpose of this action research study is to examine the effect of an innovation that includes staff coaching, curriculum adaptation, and researcher reflection on increasing staff effectiveness in supporting students with complex communication needs. This study included four participants (two special educators and two speech-language pathologists (SLPs) working

The purpose of this action research study is to examine the effect of an innovation that includes staff coaching, curriculum adaptation, and researcher reflection on increasing staff effectiveness in supporting students with complex communication needs. This study included four participants (two special educators and two speech-language pathologists (SLPs) working in Preschool Special Education (PSE) classrooms within a public school district. The study was conducted while navigating a global pandemic and emergency remote learning. Through the use of curricular noticing and an approach inspired by a Technological Pedagogical and Content Knowledge Framework (TPACK) framework, an innovation of a staff coaching model combined with adapted curriculum resources was designed to support staff members using the Big Day for PreK curriculum. Analysis of the data indicates that supporting staff through staff coaching and adapted curriculum materials increased their use and own adaptation of the curriculum. In addition, providing a staff coach with the opportunity to document and reflect on experiences can increase the use of curricula and coaching effectiveness.
ContributorsRoyster, Christina Innice (Author) / Graves Wolf, Leigh (Thesis advisor) / Zellner, Andrea (Committee member) / Boozer, April (Committee member) / Arizona State University (Publisher)
Created2020
158863-Thumbnail Image.png
Description
The maximum theoretical efficiency of a terrestrial non-concentrated silicon solar cell is 29.4%, as obtained from detailed balance analysis. Over 90% of the current silicon photovoltaics market is based on solar cells with diffused junctions (Al-BSF, PERC, PERL, etc.), which are limited in performance by increased non-radiative recombination in the

The maximum theoretical efficiency of a terrestrial non-concentrated silicon solar cell is 29.4%, as obtained from detailed balance analysis. Over 90% of the current silicon photovoltaics market is based on solar cells with diffused junctions (Al-BSF, PERC, PERL, etc.), which are limited in performance by increased non-radiative recombination in the doped regions. This limitation can be overcome through the use of passivating contacts, which prevent recombination at the absorber interfaces while providing the selectivity to efficiently separate the charge carriers generated in the absorber. This thesis aims at developing an understanding of how the material properties of the contact affect device performance through simulations.The partial specific contact resistance framework developed by Onno et al. aims to link material behavior to device performance specifically at open circuit. In this thesis, the framework is expanded to other operating points of a device, leading to a model for calculating the partial contact resistances at any current flow. The error in calculating these resistances is irrelevant to device performance resulting in an error in calculating fill factor from resistances below 0.1% when the fill factors of the cell are above 70%, i.e., for cells with good passivation and selectivity.
Further, silicon heterojunction (SHJ) and tunnel-oxide based solar cells are simulated in 1D finite-difference modeling package AFORS-HET. The effects of material property changes on device performance are investigated using novel contact materials like Al0.8Ga0.2As (hole contact for SHJ) and ITO (electron contact for tunnel-oxide cells). While changing the bandgap and electron affinity of the contact affect the height of the Schottky barrier and hence contact resistivity, increasing the doping of the contact will increase its selectivity. In the case of ITO, the contact needs to have a work function below 4.2 eV to be electron selective, which suggests that other low work function TCOs (like AZO) will be more applicable as alternative dopant-free electron contacts. The AFORS-HET model also shows that buried doped regions arising from boron diffusion in the absorber can damage passivation and decrease the open circuit voltage of the device.
ContributorsDasgupta, Sagnik (Author) / Holman, Zachary (Thesis advisor) / Onno, Arthur (Committee member) / Wang, Qing Hua (Committee member) / Arizona State University (Publisher)
Created2020
158879-Thumbnail Image.png
Description
Lateral programmable metallization cells (PMC) utilize the properties of electrodeposits grown over a solid electrolyte channel. Such devices have an active anode and an inert cathode separated by a long electrodeposit channel in a coplanar arrangement. The ability to transport large amount of metallic mass across the channel makes these

Lateral programmable metallization cells (PMC) utilize the properties of electrodeposits grown over a solid electrolyte channel. Such devices have an active anode and an inert cathode separated by a long electrodeposit channel in a coplanar arrangement. The ability to transport large amount of metallic mass across the channel makes these devices attractive for various More-Than-Moore applications. Existing literature lacks a comprehensive study of electrodeposit growth kinetics in lateral PMCs. Moreover, the morphology of electrodeposit growth in larger, planar devices is also not understood. Despite the variety of applications, lateral PMCs are not embraced by the semiconductor industry due to incompatible materials and high operating voltages needed for such devices. In this work, a numerical model based on the basic processes in PMCs – cation drift and redox reactions – is proposed, and the effect of various materials parameters on the electrodeposit growth kinetics is reported. The morphology of the electrodeposit growth and kinetics of the electrodeposition process are also studied in devices based on Ag-Ge30Se70 materials system. It was observed that the electrodeposition process mainly consists of two regimes of growth – cation drift limited regime and mixed regime. The electrodeposition starts in cation drift limited regime at low electric fields and transitions into mixed regime as the field increases. The onset of mixed regime can be controlled by applied voltage which also affects the morphology of electrodeposit growth. The numerical model was then used to successfully predict the device kinetics and onset of mixed regime. The problem of materials incompatibility with semiconductor manufacturing was solved by proposing a novel device structure. A bilayer structure using semiconductor foundry friendly materials was suggested as a candidate for solid electrolyte. The bilayer structure consists of a low resistivity oxide shunt layer on top of a high resistivity ion carrying oxide layer. Devices using Cu2O as the low resistivity shunt on top of Cu doped WO3 oxide were fabricated. The bilayer devices provided orders of magnitude improvement in device performance in the context of operating voltage and switching time. Electrical and materials characterization revealed the structure of bilayers and the mechanism of electrodeposition in these devices.
ContributorsChamele, Ninad (Author) / Kozicki, Michael (Thesis advisor) / Barnaby, Hugh (Committee member) / Newman, Nathan (Committee member) / Gonzalez-Velo, Yago (Committee member) / Arizona State University (Publisher)
Created2020