Matching Items (15)
Filtering by

Clear all filters

152195-Thumbnail Image.png
Description
Topological insulators with conducting surface states yet insulating bulk states have generated a lot of interest amongst the physics community due to their varied characteristics and possible applications. Doped topological insulators have presented newer physical states of matter where topological order co&ndashexists; with other physical properties (like magnetic order). The

Topological insulators with conducting surface states yet insulating bulk states have generated a lot of interest amongst the physics community due to their varied characteristics and possible applications. Doped topological insulators have presented newer physical states of matter where topological order co&ndashexists; with other physical properties (like magnetic order). The electronic states of these materials are very intriguing and pose problems and the possible solutions to understanding their unique behaviors. In this work, we use Electron Energy Loss Spectroscopy (EELS) – an analytical TEM tool to study both core&ndashlevel; and valence&ndashlevel; excitations in Bi2Se3 and Cu(doped)Bi2Se3 topological insulators. We use this technique to retrieve information on the valence, bonding nature, co-ordination and lattice site occupancy of the undoped and the doped systems. Using the reference materials Cu(I)Se and Cu(II)Se we try to compare and understand the nature of doping that copper assumes in the lattice. And lastly we utilize the state of the art monochromated Nion UltraSTEM 100 to study electronic/vibrational excitations at a record energy resolution from sub-nm regions in the sample.
ContributorsSubramanian, Ganesh (Author) / Spence, John (Thesis advisor) / Jiang, Nan (Committee member) / Chen, Tingyong (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2013
152088-Thumbnail Image.png
Description
The alkali activation of aluminosilicate materials as binder systems derived from industrial byproducts have been extensively studied due to the advantages they offer in terms enhanced material properties, while increasing sustainability by the reuse of industrial waste and byproducts and reducing the adverse impacts of OPC production. Fly ash and

The alkali activation of aluminosilicate materials as binder systems derived from industrial byproducts have been extensively studied due to the advantages they offer in terms enhanced material properties, while increasing sustainability by the reuse of industrial waste and byproducts and reducing the adverse impacts of OPC production. Fly ash and ground granulated blast furnace slag are commonly used for their content of soluble silica and aluminate species that can undergo dissolution, polymerization with the alkali, condensation on particle surfaces and solidification. The following topics are the focus of this thesis: (i) the use of microwave assisted thermal processing, in addition to heat-curing as a means of alkali activation and (ii) the relative effects of alkali cations (K or Na) in the activator (powder activators) on the mechanical properties and chemical structure of these systems. Unsuitable curing conditions instigate carbonation, which in turn lowers the pH of the system causing significant reductions in the rate of fly ash activation and mechanical strength development. This study explores the effects of sealing the samples during the curing process, which effectively traps the free water in the system, and allows for increased aluminosilicate activation. The use of microwave-curing in lieu of thermal-curing is also studied in order to reduce energy consumption and for its ability to provide fast volumetric heating. Potassium-based powder activators dry blended into the slag binder system is shown to be effective in obtaining very high compressive strengths under moist curing conditions (greater than 70 MPa), whereas sodium-based powder activation is much weaker (around 25 MPa). Compressive strength decreases when fly ash is introduced into the system. Isothermal calorimetry is used to evaluate the early hydration process, and to understand the reaction kinetics of the alkali powder activated systems. A qualitative evidence of the alkali-hydroxide concentration of the paste pore solution through the use of electrical conductivity measurements is also presented, with the results indicating the ion concentration of alkali is more prevalent in the pore solution of potassium-based systems. The use of advanced spectroscopic and thermal analysis techniques to distinguish the influence of studied parameters is also discussed.
ContributorsChowdhury, Ussala (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramanium D. (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2013
152620-Thumbnail Image.png
Description
The main objective of this study is to investigate the behaviour and applications of strain hardening cement composites (SHCC). Application of SHCC for use in slabs of common configurations was studied and design procedures are prepared by employing yield line theory and integrating it with simplified tri-linear model developed in

The main objective of this study is to investigate the behaviour and applications of strain hardening cement composites (SHCC). Application of SHCC for use in slabs of common configurations was studied and design procedures are prepared by employing yield line theory and integrating it with simplified tri-linear model developed in Arizona State University by Dr. Barzin Mobasher and Dr. Chote Soranakom. Intrinsic material property of moment-curvature response for SHCC was used to derive the relationship between applied load and deflection in a two-step process involving the limit state analysis and kinematically admissible displacements. For application of SHCC in structures such as shear walls, tensile and shear properties are necessary for design. Lot of research has already been done to study the tensile properties and therefore shear property study was undertaken to prepare a design guide. Shear response of textile reinforced concrete was investigated based on picture frame shear test method. The effects of orientation, volume of cement paste per layer, planar cross-section and volume fraction of textiles were investigated. Pultrusion was used for the production of textile reinforced concrete. It is an automated set-up with low equipment cost which provides uniform production and smooth final surface of the TRC. A 3-D optical non-contacting deformation measurement technique of digital image correlation (DIC) was used to conduct the image analysis on the shear samples by means of tracking the displacement field through comparison between the reference image and deformed images. DIC successfully obtained full-field strain distribution, displacement and strain versus time responses, demonstrated the bonding mechanism from perspective of strain field, and gave a relation between shear angle and shear strain.
ContributorsAswani, Karan (Author) / Mobasher, Barzin (Thesis advisor) / Dharmarajan, Subramaniam (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2014
150448-Thumbnail Image.png
Description
Concrete design has recently seen a shift in focus from prescriptive specifications to performance based specifications with increasing demands for sustainable products. Fiber reinforced composites (FRC) provides unique properties to a material that is very weak under tensile loads. The addition of fibers to a concrete mix provides additional ductility

Concrete design has recently seen a shift in focus from prescriptive specifications to performance based specifications with increasing demands for sustainable products. Fiber reinforced composites (FRC) provides unique properties to a material that is very weak under tensile loads. The addition of fibers to a concrete mix provides additional ductility and reduces the propagation of cracks in the concrete structure. It is the fibers that bridge the crack and dissipate the incurred strain energy in the form of a fiber-pullout mechanism. The addition of fibers plays an important role in tunnel lining systems and in reducing shrinkage cracking in high performance concretes. The interest in most design situations is the load where cracking first takes place. Typically the post crack response will exhibit either a load bearing increase as deflection continues, or a load bearing decrease as deflection continues. These behaviors are referred to as strain hardening and strain softening respectively. A strain softening or hardening response is used to model the behavior of different types of fiber reinforced concrete and simulate the experimental flexural response. Closed form equations for moment-curvature response of rectangular beams under four and three point loading in conjunction with crack localization rules are utilized. As a result, the stress distribution that considers a shifting neutral axis can be simulated which provides a more accurate representation of the residual strength of the fiber cement composites. The use of typical residual strength parameters by standards organizations ASTM, JCI and RILEM are examined to be incorrect in their linear elastic assumption of FRC behavior. Finite element models were implemented to study the effects and simulate the load defection response of fiber reinforced shotcrete round discrete panels (RDP's) tested in accordance with ASTM C-1550. The back-calculated material properties from the flexural tests were used as a basis for the FEM material models. Further development of FEM beams were also used to provide additional comparisons in residual strengths of early age samples. A correlation between the RDP and flexural beam test was generated based a relationship between normalized toughness with respect to the newly generated crack surfaces. A set of design equations are proposed using a residual strength correction factor generated by the model and produce the design moment based on specified concrete slab geometry.
ContributorsBarsby, Christopher (Author) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2011
150550-Thumbnail Image.png
Description
Ultra-concealable multi-threat body armor used by law-enforcement is a multi-purpose armor that protects against attacks from knife, spikes, and small caliber rounds. The design of this type of armor involves fiber-resin composite materials that are flexible, light, are not unduly affected by environmental conditions, and perform as required. The National

Ultra-concealable multi-threat body armor used by law-enforcement is a multi-purpose armor that protects against attacks from knife, spikes, and small caliber rounds. The design of this type of armor involves fiber-resin composite materials that are flexible, light, are not unduly affected by environmental conditions, and perform as required. The National Institute of Justice (NIJ) characterizes this type of armor as low-level protection armor. NIJ also specifies the geometry of the knife and spike as well as the strike energy levels required for this level of protection. The biggest challenges are to design a thin, lightweight and ultra-concealable armor that can be worn under street clothes. In this study, several fundamental tasks involved in the design of such armor are addressed. First, the roles of design of experiments and regression analysis in experimental testing and finite element analysis are presented. Second, off-the-shelf materials available from international material manufacturers are characterized via laboratory experiments. Third, the calibration process required for a constitutive model is explained through the use of experimental data and computer software. Various material models in LS-DYNA for use in the finite element model are discussed. Numerical results are generated via finite element simulations and are compared against experimental data thus establishing the foundation for optimizing the design.
ContributorsVokshi, Erblina (Author) / Rajan, Subramaniam D. (Thesis advisor) / Neithalath, Narayanan (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2012
156779-Thumbnail Image.png
Description
This research summarizes the validation testing completed for the material model MAT213, currently implemented in the LS-DYNA finite element program. Testing was carried out using a carbon fiber composite material, T800-F3900. Stacked-ply tension and compression tests were performed for open-hole and full coupons. Comparisons of experimental and simulation results showed

This research summarizes the validation testing completed for the material model MAT213, currently implemented in the LS-DYNA finite element program. Testing was carried out using a carbon fiber composite material, T800-F3900. Stacked-ply tension and compression tests were performed for open-hole and full coupons. Comparisons of experimental and simulation results showed a good agreement between the two for metrics including, stress-strain response and displacements. Strains and displacements in the direction of loading were better predicted by the simulations than for that of the transverse direction.

Double cantilever beam and end notched flexure tests were performed experimentally and through simulations to determine the delamination properties of the material at the interlaminar layers. Experimental results gave the mode I critical energy release rate as having a range of 2.18 – 3.26 psi-in and the mode II critical energy release rate as 10.50 psi-in, both for the pre-cracked condition. Simulations were performed to calibrate other cohesive zone parameters required for modeling.

Samples of tested T800/F3900 coupons were processed and examined with scanning electron microscopy to determine and understand the underlying structure of the material. Tested coupons revealed damage and failure occurring at the micro scale for the composite material.
ContributorsHolt, Nathan T (Author) / Rajan, Subramaniam D. (Thesis advisor) / Mobasher, Barzin (Committee member) / Hoover, Christian (Committee member) / Arizona State University (Publisher)
Created2018
Description
A comprehensive study was performed on non-proprietary ultra-high-performance concrete (UHPC) material and several design methods were suggested based on numerous experimental results. Several sets of compression tests, direct tensile tests, and flexural tests were performed on UHPC to provide a better understanding of the mechanisms involved in the mechanical behavior

A comprehensive study was performed on non-proprietary ultra-high-performance concrete (UHPC) material and several design methods were suggested based on numerous experimental results. Several sets of compression tests, direct tensile tests, and flexural tests were performed on UHPC to provide a better understanding of the mechanisms involved in the mechanical behavior of the fiber reinforced material. In addition to compressive tests, flexural tests, based on ASTM C1609 and EN 14651, were performed. The effect of the strain rate on the UHPC material was also investigated through the high-speed tensile tests at different strain rates. Alongside the usual measurement tools such as linear variable differential transformers (LVDT) and clip gages, digital image correlation (DIC) method was also used to capture the full-range deformations in the samples and localized crack propagations. Analytical approaches were suggested, based on the experimental results of the current research and other research groups, to provide design solutions for different applications and design approaches for UHPC and hybrid reinforced concrete (HRC) sections. The suggested methods can be used both in the ultimate limit state (ULS) and the serviceability limit state (SLS) design methods. Closed form relationships, based on the non-linear design of reinforced concrete, were used in the calculation of the load-deflection response of UHPC. The procedures were used in obtaining material properties from the flexural data using procedures that are based on back-calculation of material properties from the experimental results. Model simulations were compared with other results available in the literature. Performance of flexural reinforced UHPC concrete beam sections tested under different types of loading was addressed using a combination of fibers and rebars. The same analytical approach was suggested for the fiber reinforced concrete (FRC) sections strengthened (rehabilitated) by fiber reinforced polymers (FRP) and textile reinforced concrete (TRC). The objective is to validate the proper design procedures for flexural members as well as connection elements. The proposed solutions can be used to reduce total reinforcement by means of increasing the ductility of the FRC, HRC, and UHPC members in order to meet the required flexural reinforcement, which in some cases leads to total elimination of rebars.
ContributorsKianmofrad, Farrokh (Author) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam Dharma (Committee member) / Hoover, Christian G. (Committee member) / Arizona State University (Publisher)
Created2018
153840-Thumbnail Image.png
Description
In this research work, the process optimization of silver iodide-silver meta phosphate ionic glass molding for solid state super ionic stamping was performed. Solid state super ionic stamping is a process of all solid ambient condition electrochemical nano patterning technique. In solid state super ionic stamping, anodic dissolution on a

In this research work, the process optimization of silver iodide-silver meta phosphate ionic glass molding for solid state super ionic stamping was performed. Solid state super ionic stamping is a process of all solid ambient condition electrochemical nano patterning technique. In solid state super ionic stamping, anodic dissolution on a solid electrolyte –metal interface and subsequent charge-mass transport in the solid electrolyte is used for obtaining nanometer features on the metallic surface. The solid electrolyte referred to as the stamp is pre-patterned with features to be obtained on the metallic surface. This research developed the process for obtaining stamp with specific dimensions by making use of compression molding. The compression molding process was optimized by varying the five process parameters-temperature, pressure, holding time, pressing time and cooling time. The objective of the process optimization was to obtain best geometrical features for the stamp including flatness and surface roughness and by optimizing the compression molding process, stamp with minimum flatness and surface roughness was obtained. After the experimental optimization of the process was completed, statistical analysis was performed to understand the relative significance of the process parameters and the interaction of the process parameters on the flatness and surface roughness values of the molded stamp. Structural characterization was performed to obtain the variation of average domain size of ionic glass particles within the molded glass disk by varying the process parameters of holding time, pressing time and cooling time.
ContributorsPanikkar, Gautam (Author) / Hsu, Keng H (Thesis advisor) / Chan, Candace (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2015
155044-Thumbnail Image.png
Description
Composite materials are widely used in various structural applications, including within the automotive and aerospace industries. Unidirectional composite layups have replaced other materials such as metals due to composites’ high strength-to-weight ratio and durability. Finite-element (FE) models are actively being developed to model response of composite systems subjected to a

Composite materials are widely used in various structural applications, including within the automotive and aerospace industries. Unidirectional composite layups have replaced other materials such as metals due to composites’ high strength-to-weight ratio and durability. Finite-element (FE) models are actively being developed to model response of composite systems subjected to a variety of loads including impact loads. These FE models rely on an array of measured material properties as input for accuracy. This work focuses on an orthotropic plasticity constitutive model that has three components – deformation, damage and failure. The model relies on the material properties of the composite such as Young’s modulus, Poisson’s ratio, stress-strain curves in the principal and off-axis material directions, etc. This thesis focuses on two areas important to the development of the FE model – tabbing of the test specimens and data processing of the tests used to generate the required stress-strain curves. A comparative study has been performed on three candidate adhesives using double lap-shear testing to determine their effectiveness in composite specimen tabbing. These tests determined the 3M DP460 epoxy performs best in shear. The Loctite Superglue with 80% the ultimate stress of the 3M DP460 epoxy is acceptable when test specimens have to be ready for testing within a few hours. JB KwikWeld is not suitable for tabbing. In addition, the Experimental Data Processing (EDP) program has been improved for use in post-processing raw data from composites test. EDP has improved to allow for complete processing with the implementation of new weighted least squares smoothing options, curve averaging techniques, and new functionality for data manipulation.
ContributorsSchmidt, Nathan William (Author) / Rajan, Subramaniam D. (Thesis advisor) / Neithalath, Narayanan (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2016
187736-Thumbnail Image.png
Description
Lithium nickel manganese cobalt oxides (NMCs) are layered oxide cathode materials which are becoming increasingly popular as the demand for lithium-ion batteries increases. Lithium-ion batteries are used to power modern vehicles and for other battery applications. To better understand the structure and energetics of NMCs, various molar ratios of these

Lithium nickel manganese cobalt oxides (NMCs) are layered oxide cathode materials which are becoming increasingly popular as the demand for lithium-ion batteries increases. Lithium-ion batteries are used to power modern vehicles and for other battery applications. To better understand the structure and energetics of NMCs, various molar ratios of these compounds were synthesized via a sol-gel method and characterized with powder X-ray diffraction profile fitting. Lattice constants for the nickel, manganese, and cobalt solid solutions were determined. High temperature oxide melt solution calorimetry was used to determine the enthalpies of formation and mixing. All but Li2MnO3 had the same space group as LiCoO2 (R-3m). The lattice constants approximately followed a linear fit with cobalt mole fraction (R2average= 0.973) for the cobalt series. As the molar ratio of cobalt increased the lattice constants decreased. The nickel series was less linear (R2average=0.733) and had an opposite lattice constant trend to cobalt. The manganese series possessed a roughly linear trend when excluding the outlier Li2MnO3 (R2average=0.282). The formation enthalpy of the cobalt series becomes more negative as more cobalt is added. A second order polynomial fit could be used to model the enthalpies of mixing for the series. NMC2.5,2.5,5 exhibited the most stable energetics. A third order polynomial fit could be used to model the enthalpy of mixing for the nickel and manganese series with NMC811 and NMC181 exhibiting the most stable energetics.
ContributorsKanitz, William James (Author) / Navrotsky, Alexandra (Thesis advisor) / Chan, Candace (Committee member) / Xu, Hongwu (Committee member) / Arizona State University (Publisher)
Created2023