Matching Items (8)
Filtering by

Clear all filters

153042-Thumbnail Image.png
Description
The absorption spectra of metal-centered phthalocyanines (MPc's) have been investigated since the early 1960's. With improved experimental techniques to characterize this class of molecules the band assignments have advanced. The characterization remains difficult with historic disagreements. A new push for characterization came with a wave of interest in using these

The absorption spectra of metal-centered phthalocyanines (MPc's) have been investigated since the early 1960's. With improved experimental techniques to characterize this class of molecules the band assignments have advanced. The characterization remains difficult with historic disagreements. A new push for characterization came with a wave of interest in using these molecules for absorption/donor molecules in organic photovoltaics. The use of zinc phthalocyanine (ZnPc) became of particular interest, in addition to novel research being done for azaporphyrin analogs of ZnPc.

A theoretical approach is taken to research the excited states of these molecules using time-dependent density functional theory (TDDFT). Most theoretical results for the first excited state in ZnPc are in only limited agreement with experiment (errors near 0.1 eV or higher). This research investigates ZnPc and 10 additional porphyrin analogs. Excited-state properties are predicted for 8 of these molecules using ab initio computational methods and symmetry breaking for accurate time- dependent self-consistent optimization. Franck-Condon analysis is used to predict the Q-band absorption spectra for all 8 of these molecules. This is the first time that Franck-Condon analysis has been reported in absolute units for any of these molecules. The first excited-state energy for ZnPc is found to be the closest to experiment thus far using a range-separated meta-GGA hybrid functional. The theoretical results are used to find a trend in the novel design of new porphyrin analog molecules.
ContributorsTheisen, Rebekah (Author) / Adams, James B (Thesis advisor) / Li, Jian (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2014
150397-Thumbnail Image.png
Description
The behavior of a solid oxide fuel cell (SOFC) cermet (ceramic-metal composite) anode under reaction conditions depends significantly on the structure, morphology and atomic scale interactions between the metal and the ceramic components. In situ environmental transmission electron microscope (ETEM) is an important tool which not only allows us to

The behavior of a solid oxide fuel cell (SOFC) cermet (ceramic-metal composite) anode under reaction conditions depends significantly on the structure, morphology and atomic scale interactions between the metal and the ceramic components. In situ environmental transmission electron microscope (ETEM) is an important tool which not only allows us to perform the basic nanoscale characterization of the anode materials, but also to observe in real-time, the dynamic changes in the anode material under near-reaction conditions. The earlier part of this dissertation is focused on the synthesis and characterization of Pr- and Gd-doped cerium oxide anode materials. A novel spray drying set-up was designed and constructed for preparing nanoparticles of these mixed-oxides and nickel oxide for anode fabrication. X-ray powder diffraction was used to investigate the crystal structure and lattice parameters of the synthesized materials. Particle size distribution, morphology and chemical composition were investigated using transmission electron microscope (TEM). The nanoparticles were found to possess pit-like defects of average size 2 nm after subjecting the spray-dried material to heat treatment at 700 °C for 2 h in air. A novel electron energy-loss spectroscopy (EELS) quantification technique for determining the Pr and Gd concentrations in the mixed oxides was developed. Nano-scale compositional heterogeneity was observed in these materials. The later part of the dissertation focuses mainly on in situ investigations of the anode materials under a H2 environment in the ETEM. Nano-scale changes in the stand-alone ceramic components of the cermet anode were first investigated. Particle size and composition of the individual nanoparticles of Pr-doped ceria (PDC) were found to affect their reducibility in H2 gas. Upon reduction, amorphization of the nanoparticles was observed and was linked to the presence of pit-like defects in the spray-dried material. Investigation of metal-ceramic interactions in the Ni-loaded PDC nanoparticles indicated a localized reduction of Ce in the vicinity of the Ni/PDC interface at 420 °C. Formation of a reduction zone around the interface was attributed to H spillover which was observed directly in the ETEM. Preliminary results on the fabrication of model SOFCs and in situ behavior of Ni/Gd-doped ceria anodes have been presented.
ContributorsSharma, Vaneet (Author) / Crozier, Peter A. (Thesis advisor) / Sharma, Renu (Thesis advisor) / Adams, James B (Committee member) / Dey, Sandwip (Committee member) / Arizona State University (Publisher)
Created2011
150255-Thumbnail Image.png
Description
Thin films of ever reducing thickness are used in a plethora of applications and their performance is highly dependent on their microstructure. Computer simulations could then play a vital role in predicting the microstructure of thin films as a function of processing conditions. FACET is one such software tool designed

Thin films of ever reducing thickness are used in a plethora of applications and their performance is highly dependent on their microstructure. Computer simulations could then play a vital role in predicting the microstructure of thin films as a function of processing conditions. FACET is one such software tool designed by our research group to model polycrystalline thin film growth, including texture evolution and grain growth of polycrystalline films in 2D. Several modifications to the original FACET code were done to enhance its usability and accuracy. Simulations of sputtered silver thin films are presented here with FACET 2.0 with qualitative and semi-quantitative comparisons with previously published experimental results. Comparisons of grain size, texture and film thickness between simulations and experiments are presented which describe growth modes due to various deposition factors like flux angle and substrate temperature. These simulations provide reasonable agreement with the experimental data over a diverse range of process parameters. Preliminary experiments in depositions of Silver films are also attempted with varying substrates and thickness in order to generate complementary experimental and simulation studies of microstructure evolution. Overall, based on the comparisons, FACET provides interesting insights into thin film growth processes, and the effects of various deposition conditions on thin film structure and microstructure. Lastly, simple molecular dynamics simulations of deposition on bi-crystals are attempted for gaining insight into texture based grain competition during film growth. These simulations predict texture based grain coarsening mechanisms like twinning and grain boundary migration that have been commonly reported in FCC films.
ContributorsRairkar, Asit (Author) / Adams, James B (Thesis advisor) / Krause, Stephen (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2011
149710-Thumbnail Image.png
Description
Fuel cells, particularly solid oxide fuel cells (SOFC), are important for the future of greener and more efficient energy sources. Although SOFCs have been in existence for over fifty years, they have not been deployed extensively because they need to be operated at a high temperature (∼1000 °C), are expensive,

Fuel cells, particularly solid oxide fuel cells (SOFC), are important for the future of greener and more efficient energy sources. Although SOFCs have been in existence for over fifty years, they have not been deployed extensively because they need to be operated at a high temperature (∼1000 °C), are expensive, and have slow response to changes in energy demands. One important need for commercialization of SOFCs is a lowering of their operating temperature, which requires an electrolyte that can operate at lower temperatures. Doped ceria is one such candidate. For this dissertation work I have studied different types of doped ceria to understand the mechanism of oxygen vacancy diffusion through the bulk. Doped ceria is important because they have high ionic conductivities thus making them attractive candidates for the electrolytes of solid oxide fuel cells. In particular, I have studied how the ionic conductivities are improved in these doped materials by studying the oxygen-vacancy formations and migrations. In this dissertation I describe the application of density functional theory (DFT) and Kinetic Lattice Monte Carlo (KLMC) simulations to calculate the vacancy diffusion and ionic conductivities in doped ceria. The dopants used are praseodymium (Pr), gadolinium (Gd), and neodymium (Nd), all belonging to the lanthanide series. The activation energies for vacancy migration between different nearest neighbor (relative to the dopant) positions were calculated using the commercial DFT code VASP (Vienna Ab-initio Simulation Package). These activation energies were then used as inputs to the KLMC code that I co-developed. The KLMC code was run for different temperatures (673 K to 1073 K) and for different dopant concentrations (0 to 40%). These simulations have resulted in the prediction of dopant concentrations for maximum ionic conductivity at a given temperature.
ContributorsAnwar, Shahriar (Author) / Adams, James B (Thesis advisor) / Crozier, Peter (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
135204-Thumbnail Image.png
Description
The vastly growing field of supercomputing is in dire need of a new measurement system to optimize JMRAM (Josephson junction magnetoresistive random access memory) devices. To effectively measure these devices, an ultra-low-noise, low cost cryogenic dipping probe with a dynamic voltage range is required. This dipping probe has been designed

The vastly growing field of supercomputing is in dire need of a new measurement system to optimize JMRAM (Josephson junction magnetoresistive random access memory) devices. To effectively measure these devices, an ultra-low-noise, low cost cryogenic dipping probe with a dynamic voltage range is required. This dipping probe has been designed by ASU with <100 nVp-p noise, <10 nV offsets, 10 pV to 16 mV voltage range, and negligible thermoelectric drift. There is currently no other research group or company that can currently match both these low noise levels and wide voltage range. Two different dipping probes can be created with these specifications: one for high-use applications and one for low-use applications. The only difference between these probes is the outer shell; the high-use application probe has a shell made of G-10 fiberglass for a higher price, and the low-use application probe has a shell made of AISI 310 steel for a lower price. Both types of probes can be assembled in less than 8 hours for less than $2,500, requiring only soldering expertise. The low cost and short time to create these probes makes wide profit margins possible. The market for these cryogenic dipping probes is currently untapped, as most research groups and companies that use these probes build their own, which allows for rapid business growth. These potential consumers can be easily reached by marketing these probes at superconducting conferences. After several years of selling >50 probes, mass production can easily become possible by hiring several technicians, and still maintaining wide profit margins.
ContributorsHudson, Brooke Ashley (Author) / Adams, James (Thesis director) / Anwar, Shahriar (Committee member) / Materials Science and Engineering Program (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
155237-Thumbnail Image.png
Description
Thin films have been widely used in various applications. This research focuses on the characterization of novel thin films in the integrated circuits and photovoltaic techniques. The ion implanted layer in silicon can be treated as ion implanted thin film, which plays an essential role in the integrated circuits fabrication.

Thin films have been widely used in various applications. This research focuses on the characterization of novel thin films in the integrated circuits and photovoltaic techniques. The ion implanted layer in silicon can be treated as ion implanted thin film, which plays an essential role in the integrated circuits fabrication. Novel rapid annealing methods, i.e. microwave annealing and laser annealing, are conducted to activate ion dopants and repair the damages, and then are compared with the conventional rapid thermal annealing (RTA). In terms of As+ and P+ implanted Si, the electrical and structural characterization confirms that the microwave and laser annealing can achieve more efficient dopant activation and recrystallization than conventional RTA. The efficient dopant activation in microwave annealing is attributed to ion hopping under microwave field, while the liquid phase growth in laser annealing provides its efficient dopant activation. The characterization of dopants diffusion shows no visible diffusion after microwave annealing, some extent of end range of diffusion after RTA, and significant dopant diffusion after laser annealing.

For photovoltaic applications, an indium-free novel three-layer thin-film structure (transparent composited electrode (TCE)) is demonstrated as a promising transparent conductive electrode for solar cells. The characterization of TCE mainly focuses on its optical and electrical properties. Transfer matrix method for optical transmittance calculation is validated and proved to be a desirable method for predicting transmittance of TCE containing continuous metal layer, and can estimate the trend of transmittance as the layer thickness changes. TiO2/Ag/TiO2 (TAgT) electrode for organic solar cells (OSCs) is then designed using numerical simulation and shows much higher Haacke figure of merit than indium tin oxide (ITO). In addition, TAgT based OSC shows better performance than ITO based OSC when compatible hole transfer layer is employed. The electrical and structural characterization of hole transfer layers (HTLs) in OSCs reveals MoO3 is the compatible HTL for TAgT anode. In the end, the reactive ink printed Ag film for solar cell contact application is studied by characterizing its electromigration lifetime. A percolative model is proposed and validated for predicting the resistivity and lifetime of printed Ag thin films containing porous structure.
ContributorsZhao, Zhao (Author) / Alford, Terry L. (Thesis advisor) / Anwar, Shahriar (Committee member) / Theodore, David (Committee member) / Arizona State University (Publisher)
Created2017
132562-Thumbnail Image.png
Description
Titanium dioxide is an essential material under research for energy and environmental applications, chiefly through its photocatalytic properties. These properties allow it to be used for water-splitting, detoxification, and photovoltaics, in addition to its conventional uses in pigmentation and sunscreen. Titanium dioxide exists in several polymorphic structures, of

Titanium dioxide is an essential material under research for energy and environmental applications, chiefly through its photocatalytic properties. These properties allow it to be used for water-splitting, detoxification, and photovoltaics, in addition to its conventional uses in pigmentation and sunscreen. Titanium dioxide exists in several polymorphic structures, of which the most common are rutile and anatase. We focused on anatase for the purposes of this research, due to its promising results for hydrolysis.

Anatase exists often in its reduced form (TiO2-x), enabling it to perform redox reactions through the absorption and release of oxygen into/from the crystal lattice. These processes result in structural changes, induced by defects in the material, which can theoretically be observed using advanced characterization methods. In situ electron microscopy is one of such methods, and can provide a window into these structural changes. However, in order to interpret the structural evolution caused by defects in materials, it is often necessary and pertinent to use atomistic simulations to compare the experimental images with models.

In this thesis project, we modeled the defect structures in anatase, around oxygen vacancies and at surfaces, using molecular dynamics, benchmarked with density functional theory. Using a “reactive” forcefield designed for the simulation of interactions between anatase and water that can model and treat bonding through the use of bond orders, different vacancy structures were analyzed and simulated. To compare these theoretical, generated models with experimental data, the “multislice approach” to TEM image simulation was used. We investigated a series of different vacancy configurations and surfaces and generated fingerprints for comparison with TEM experiments. This comparison demonstrated a proof of concept for a technique suggesting the possibility for the identification of oxygen vacancy structures directly from TEM images. This research aims to improve our atomic-level understanding of oxide materials, by providing a methodology for the analysis of vacancy formation from very subtle phenomena in TEM images.
ContributorsShindel, Benjamin Noam (Author) / Crozier, Peter (Thesis director) / Anwar, Shahriar (Committee member) / Singh, Arunima (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
187671-Thumbnail Image.png
Description
Over the past few years, research into the use of doped diamond in electronics has seen an exponential growth. In the course of finding ways to reduce the contact resistivity, nanocarbon materials have been an interesting focus. In this work, the transfer length method (TLM) was used to investigate Ohmic

Over the past few years, research into the use of doped diamond in electronics has seen an exponential growth. In the course of finding ways to reduce the contact resistivity, nanocarbon materials have been an interesting focus. In this work, the transfer length method (TLM) was used to investigate Ohmic contact properties using the tri-layer stack Ti/Pt/Au on nitrogen-doped n-type conducting nano-carbon (nanoC) layers grown on (100) diamond substrates. The nanocarbon material was characterized using Secondary Ion Mass Spectrometry (SIMS), Scanning electron Microscopy (SEM) X-ray diffraction (XRD), Raman scattering and Hall effect measurements to probe the materials characteristics. Room temperature electrical measurements were taken, and samples were annealed to observe changes in electrical conductivity. Low specific contact resistivity values of 8 x 10^-5 Ωcm^2 were achieved, which was almost two orders of magnitude lower than previously reported values. The results were attributed to the increased nitrogen incorporation, and the presence of electrically active defects which leads to an increase in conduction in the nanocarbon. Further a study of light phosphorus doped layers using similar methods with Ti/Pt/Au contacts again yielded a low contact resistivity of about 9.88 x 10^-2 Ωcm^2 which is an interesting prospect among lightly doped diamond films for applications in devices such as transistors. In addition, for the first time, hafnium was substituted for Ti in the contact stack (Hf/Pt/Au) and studied on nitrogen doped nanocarbon films, which resulted in low contact resistivity values on the order of 10^-2 Ωcm^2. The implications of the results were discussed, and recommendations for improving the experimental process was outlined. Lastly, a method for the selective area growth of nanocarbon was developed and studied and the results provided an insight into how different characterizations can be used to confirm the presence of the nanocrystalline diamond material, the limitations due to the film thickness was explored and ideas for future work was proposed.
ContributorsAmonoo, Evangeline Abena (Author) / Thornton, Trevor (Thesis advisor) / Alford, Terry L (Thesis advisor) / Anwar, Shahriar (Committee member) / Theodore, David (Committee member) / Arizona State University (Publisher)
Created2023