Matching Items (2)
Filtering by

Clear all filters

157184-Thumbnail Image.png
Description
The large-scale anthropogenic emission of carbon dioxide into the atmosphere leads to many unintended consequences, from rising sea levels to ocean acidification. While a clean energy infrastructure is growing, mid-term strategies that are compatible with the current infrastructure should be developed. Carbon capture and storage in fossil-fuel power plants is

The large-scale anthropogenic emission of carbon dioxide into the atmosphere leads to many unintended consequences, from rising sea levels to ocean acidification. While a clean energy infrastructure is growing, mid-term strategies that are compatible with the current infrastructure should be developed. Carbon capture and storage in fossil-fuel power plants is one way to avoid our current gigaton-scale emission of carbon dioxide into the atmosphere. However, for this to be possible, separation techniques are necessary to remove the nitrogen from air before combustion or from the flue gas after combustion. Metal-organic frameworks (MOFs) are a relatively new class of porous material that show great promise for adsorptive separation processes. Here, potential mechanisms of O2/N2 separation and CO2/N2 separation are explored.

First, a logical categorization of potential adsorptive separation mechanisms in MOFs is outlined by comparing existing data with previously studied materials. Size-selective adsorptive separation is investigated for both gas systems using molecular simulations. A correlation between size-selective equilibrium adsorptive separation capabilities and pore diameter is established in materials with complex pore distributions. A method of generating mobile extra-framework cations which drastically increase adsorptive selectivity toward nitrogen over oxygen via electrostatic interactions is explored through experiments and simulations. Finally, deposition of redox-active ferrocene molecules into systematically generated defects is shown to be an effective method of increasing selectivity towards oxygen.
ContributorsMcIntyre, Sean (Author) / Mu, Bin (Thesis advisor) / Green, Matthew (Committee member) / Lind, Marylaura (Committee member) / Arizona State University (Publisher)
Created2019
152675-Thumbnail Image.png
Description
The initial microstructure of oxide fuel pellets can play a key role in their performance. At low burnups, the transport of fission products has a strong dependence on oxygen content, grain size distribution, porosity and grain boundary (GB) characteristics (crystallography, geometry and topology), all of which, in turn depend on

The initial microstructure of oxide fuel pellets can play a key role in their performance. At low burnups, the transport of fission products has a strong dependence on oxygen content, grain size distribution, porosity and grain boundary (GB) characteristics (crystallography, geometry and topology), all of which, in turn depend on processing conditions. These microstructural features can also affect the fuel densification, thermal conductivity and microstructure evolution inside the reactor. Understanding these effects can provide insight into microstructure evolution of fuels in-pile. In this work, mechanical and ion beam serial sectioning techniques were developed to obtain Electron Backscatter Diffraction (EBSD) data, both in 2-D and 3-D, for depleted UO2+X pellets manufactured under different conditions. The EBSD maps were used to relate processing conditions to microstructural features, with emphasis on special GBs according to the Coincident Site Lattice (CSL) model, as well as correlations between pore size and location in the microstructure. Furthermore, larger grains (at least 2.5 times the average grain size) were observed in all the samples and studied. Results indicate that larger grains, in samples manufactured under different conditions, dominate the overall crystallographic texture and have a fairly strong GB texture. Moreover, it seems that the preferential misorientation axis for these GBs, regardless of the O/M, is {001}. These results might be related to GB energy and structure and, suggest that the mechanism that controls grain growth seems to be independent of both processing conditions and stoichiometry. Additionally, a sample was heat treated to relate grain growth and crystallography. The results indicate that at least two mechanisms were involved. Lengthening of GBs was observed for larger grains. Another mechanism of grain growth was observed, in this case, grains rotate to match a neighboring grain forming a larger grain. In the new grain, the misorientation between the two neighboring grains decreases to less than 5 degrees, forming a new larger grain. The results presented in this work indicate that detailed studies of the initial microstructure of the fuel, with emphasis on the crystallography of grains and GBs could help to give insights on the in-pile microstructural evolution of the fuel.
ContributorsRudman Prieto, Karin (Author) / Peralta, Pedro (Thesis advisor) / Ponce, Fernando (Committee member) / Sieradski, Karl (Committee member) / Arizona State University (Publisher)
Created2014