Matching Items (14)
Filtering by

Clear all filters

153505-Thumbnail Image.png
Description
Spider dragline silk is an outstanding biopolymer with a strength that exceeds steel by weight and a toughness greater than high-performance fibers like Kevlar. For this reason, structural and dynamic studies on the spider silk are of great importance for developing future biomaterials. The spider dragline silk comprises two silk

Spider dragline silk is an outstanding biopolymer with a strength that exceeds steel by weight and a toughness greater than high-performance fibers like Kevlar. For this reason, structural and dynamic studies on the spider silk are of great importance for developing future biomaterials. The spider dragline silk comprises two silk proteins, Major ampullate Spidroin 1 and 2 (MaSp1 and 2), which are synthesized and stored in the major ampullate (MA) gland of spiders. The initial state of the silk proteins within Black Widow MA glands was probed with solution-state NMR spectroscopy. The conformation dependent chemical shifts information indicates that the silk proteins are unstructured and in random coil conformation. 15N relaxation parameters, T1, T2 and 15N-{1H} steady-state NOE were measured to probe the backbone dynamics for MA silk proteins. These measurements indicate fast sub-nanosecond timescale backbone dynamics for the repetitive core of spider MA proteins indicating that the silk proteins are unfolded, highly flexible random coils in the MA gland. The translational diffusion coefficients of the spider silk proteins within the MA gland were measured using 1H diffusion NMR at 1H sites from different amino acids. A phenomenon was observed where the measured diffusion coefficients decrease with an increase in the diffusion delay used. The mean displacement along the external magnetic field was found to be 0.35 μm and independent of the diffusion delay. The results indicate that the diffusion of silk protein was restricted due to intermolecular cross-linking with only segmental diffusion observable.

To understand how a spider converts the unfolded protein spinning dope into a highly structured and oriented in the super fiber,the effect of acidification on spider silk assembly was investigated on native spidroins from the major ampullate (MA) gland fluid excised from Latrodectus hesperus (Black Widow) spiders. The in vitro spider silk assembly kinetics were monitored as a function of pH with a 13C solid-state Magic Angle Spinning (MAS) NMR approach. The results confirm the importance of acidic pH in the spider silk self-assembly process with observation of a sigmoidal nucleation-elongation kinetic profile. The rates of nucleation and elongation and the percentage of β-sheet structure in the grown fibers depend on pH.

The secondary structure of the major ampullate silk from Peucetia viridians (Green Lynx) spiders was characterized by X-ray diffraction (XRD) and solid-state NMR spectroscopy. From XRD measurement, β-sheet nano-crystallites were observed that are highly oriented along the fiber axis with an orientational order of 0.980. Compare to the crystalline region, the amorphous region was found to be partially oriented with an orientational order of 0.887. Further, two dimensional 13C-13C through-space and through-bond solid-state NMR experiments provide structural analysis for the repetitive amino acid motifs in the silk proteins. The nano-crystallites are mainly alanine-rich β-sheet structures. The total percentage of crystalline region is determined to be 40.0±1.2 %. 18±1 % of alanine, 60±2 % glycine and 54±2 % serine are determined to be incorporated into helical conformations while 82±1 % of alanine, 40±3 % glycine and 46±2 % serine are in the β-sheet conformation.
ContributorsXu, Dian (Author) / Yarger, Jeffery L (Thesis advisor) / Holland, Gregory P (Thesis advisor) / Wang, Xu (Committee member) / Liu, Yan (Committee member) / Arizona State University (Publisher)
Created2015
153466-Thumbnail Image.png
Description
Fluorescence spectroscopy is a popular technique that has been particularly useful in probing biological systems, especially with the invention of single molecule fluorescence. For example, Förster resonance energy transfer (FRET) is one tool that has been helpful in probing distances and conformational changes in biomolecules. In this work, important properties

Fluorescence spectroscopy is a popular technique that has been particularly useful in probing biological systems, especially with the invention of single molecule fluorescence. For example, Förster resonance energy transfer (FRET) is one tool that has been helpful in probing distances and conformational changes in biomolecules. In this work, important properties necessary in the quantification of FRET were investigated while FRET was also applied to gain insight into the dynamics of biological molecules. In particular, dynamics of damaged DNA was investigated. While damages in DNA are known to affect DNA structure, what remains unclear is how the presence of a lesion, or multiple lesions, affects the flexibility of DNA, especially in relation to damage recognition by repair enzymes. DNA conformational dynamics was probed by combining FRET and fluorescence anisotropy along with biochemical assays. The focus of this work was to investigate the relationship between dynamics and enzymatic repair. In addition, to properly quantify fluorescence and FRET data, photophysical phenomena of fluorophores, such as blinking, needs to be understood. The triplet formation of the single molecule dye TAMRA and the photoisomerization yield of two different modifications of the single molecule cyanine dye Cy3 were examined spectroscopically to aid in accurate data interpretation. The combination of the biophysical and physiochemical studies illustrates how fluorescence spectroscopy can be used to answer biological questions.
ContributorsShepherd Stennett, Elana Maria (Author) / Levitus, Marcia (Thesis advisor) / Ros, Robert (Committee member) / Liu, Yan (Committee member) / Arizona State University (Publisher)
Created2015
135187-Thumbnail Image.png
Description
Transient Receptor Potential (TRP) ion channels are a diverse family of nonselective, polymodal sensors in uni- and multicellular eukaryotes that are implicated in an assortment of biological contexts and human disease. The cold-activated TRP Melastatin-8 (TRPM8) channel, also recognized as the human body's primary cold sensor, is among the few

Transient Receptor Potential (TRP) ion channels are a diverse family of nonselective, polymodal sensors in uni- and multicellular eukaryotes that are implicated in an assortment of biological contexts and human disease. The cold-activated TRP Melastatin-8 (TRPM8) channel, also recognized as the human body's primary cold sensor, is among the few TRP channels responsible for thermosensing. Despite sustained interest in the channel, the mechanisms underlying TRPM8 activation, modulation, and gating have proved challenging to study and remain poorly understood. In this thesis, I offer data collected on various expression, extraction, and purification conditions tested in E. Coli expression systems with the aim to optimize the generation of a structurally stable and functional human TRPM8 pore domain (S5 and S6) construct for application in structural biology studies. These studies, including the biophysical technique nuclear magnetic spectroscopy (NMR), among others, will be essential for elucidating the role of the TRPM8 pore domain in in regulating ligand binding, channel gating, ion selectively, and thermal sensitivity. Moreover, in the second half of this thesis, I discuss the ligation-independent megaprimer PCR of whole-plasmids (MEGAWHOP PCR) cloning technique, and how it was used to generate chimeras between TRPM8 and its nearest analog TRPM2. I review steps taken to optimize the efficiency of MEGAWHOP PCR and the implications and unique applications of this novel methodology for advancing recombinant DNA technology. I lastly present preliminary electrophysiological data on the chimeras, employed to isolate and study the functional contributions of each individual transmembrane helix (S1-S6) to TRPM8 menthol activation. These studies show the utility of the TRPM8\u2014TRPM2 chimeras for dissecting function of TRP channels. The average current traces analyzed thus far indicate that the S2 and S3 helices appear to play an important role in TRPM8 menthol modulation because the TRPM8[M2S2] and TRPM8[M2S3] chimeras significantly reduce channel conductance in the presence of menthol. The TRPM8[M2S4] chimera, oppositely, increases channel conductance, implying that the S4 helix in native TRPM8 may suppress menthol modulation. Overall, these findings show that there is promise in the techniques chosen to identify specific regions of TRPM8 crucial to menthol activation, though the methods chosen to study the TRPM8 pore independent from the whole channel may need to be reevaluated. Further experiments will be necessary to refine TRPM8 pore solubilization and purification before structural studies can proceed, and the electrophysiology traces observed for the chimeras will need to be further verified and evaluated for consistency and physiological significance.
ContributorsWaris, Maryam Siddika (Author) / Van Horn, Wade (Thesis director) / Redding, Kevin (Committee member) / School of Molecular Sciences (Contributor) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134989-Thumbnail Image.png
Description
The FoF1 ATP synthase is a molecular motor critical to the metabolism of virtually all life forms, and it acts in the manner of a hydroelectric generator. The F1 complex contains an (αβ)3 (hexamer) ring in which catalysis occurs, as well as a rotor comprised by subunit-ε in addition to

The FoF1 ATP synthase is a molecular motor critical to the metabolism of virtually all life forms, and it acts in the manner of a hydroelectric generator. The F1 complex contains an (αβ)3 (hexamer) ring in which catalysis occurs, as well as a rotor comprised by subunit-ε in addition to the coiled-coil and globular foot domains of subunit-γ. The F1 complex can hydrolyze ATP in vitro in a manner that drives counterclockwise (CCW) rotation, in 120° power strokes, as viewed from the positive side of the membrane. The power strokes that occur in ≈ 300 μsec are separated by catalytic dwells that occur on a msec time scale. A single-molecule rotation assay that uses the intensity of polarized light, scattered from a 75 × 35 nm gold nanorod, determined the average rotational velocity of the power stroke (ω, in degrees/ms) as a function of the rotational position of the rotor (θ, in degrees, measured in reference to the catalytic dwell). The velocity is not constant but rather accelerates and decelerates in two Phases. Phase-1 (0° - 60°) is believed to derive power from elastic energy in the protein. At concentrations of ATP that limit the rate of ATP hydrolysis, the rotor can stop for an ATP-binding dwell during Phase-1. Although the most probable position that the ATP-binding dwell occurs is 40° after the catalytic dwell, the ATP-binding dwell can occur at any rotational position during Phase-1 of the power stroke. Phase-2 of the power stroke (60° - 120°) is believed to be powered by the ATP-binding induced closure of the lever domain of a β-subunit (as it acts as a cam shaft against the γ-subunit). Algorithms were written, to sort and analyze F1-ATPase power strokes, to determine the average rotational velocity profile of power strokes as a function of the rotational position at which the ATP-binding dwell occurs (θATP-bd), and when the ATP-binding dwell is absent. Sorting individual ω(θ) curves, as a function of θATP-bd, revealed that a dependence of ω on
θATP-bd exists. The ATP-binding dwell can occur even at saturating ATP concentrations. We report that ω follows a distinct pattern in the vicinity of the ATP-binding dwell, and that the ω(θ) curve contains the same oscillations within it regardless of θATP-bd. We observed that an acceleration/deceleration dependence before and after the ATP-binding dwell, respectively, remained for increasing time intervals as the dwell occurred later in Phase-1, to a maximum of ≈ 40°. The results were interpreted in terms of a model in which the ATP-binding dwell results from internal drag at a variable position on the γε rotor.
ContributorsBukhari, Zain Aziz (Author) / Frasch, Wayne D. (Thesis director) / Allen, James P. (Committee member) / Redding, Kevin (Committee member) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
155504-Thumbnail Image.png
Description
Fluorescence spectroscopy is a powerful tool for biophysical studies due to its high sensitivity and broad availability. It is possible to detect fluorescence from single molecules allowing researchers to see the behavior of subpopulations whose presence is obscured by “bulk” collection methods. The fluorescent probes used in these

Fluorescence spectroscopy is a powerful tool for biophysical studies due to its high sensitivity and broad availability. It is possible to detect fluorescence from single molecules allowing researchers to see the behavior of subpopulations whose presence is obscured by “bulk” collection methods. The fluorescent probes used in these experiments are affected by the solution and macromolecular environments they are in. A misunderstanding of a probe’s photophysics can lead researchers to assign observed behavior to biomolecules, when in fact the probe is responsible. On the other hand, a probe’s photophysical behavior is a signature of the environment surrounding it; it can be exploited to learn about the biomolecule(s) under study. A thorough examination of a probe’s photophysics is critical to data interpretation in both cases and is the focus of this work. This dissertation investigates the photophysical behavior of symmetric and asymmetric cyanines in a variety of solution and biomolecular environments. Using fluorescent techniques—such as time-correlated single photon counting (TCSPC) and fluorescence correlation spectroscopy (FCS)—it was found that cyanines are influenced by the local environment. In the first project, the symmetric cyanines are found to be susceptible to paramagnetic species, such as manganese(II), that enhance the intersystem crossing (ISC) rate increasing triplet blinking and accelerating photobleaching. Another project found the increase in fluorescence of Cy3 in the protein induced fluorescence enhancement (PIFE) technique is due to reduced photoisomerization caused by the proximity of protein to Cy3. The third project focused on asymmetric cyanines; their photophysical behavior has not been previously characterized. Dy630 as a free dye behaves like Cy3; it has a short lifetime and can deactivate via photoisomerization. Preliminary experiments on Dy dyes conjugated to DNA show these dyes do not photoisomerize, and do not show PIFE potential. Further research will explore other conjugation strategies, with the goal of optimizing conditions in which Dy630 can be used as the red-absorbing analogue of Cy3 for PIFE applications. In summary, this dissertation focused on photophysical investigations, the understanding of which forms the backbone of rigorous fluorescent studies and is vital to the development of the fluorescence field.
ContributorsCiuba, Monika A (Author) / Levitus, Marcia (Thesis advisor) / Liu, Yan (Committee member) / Vaiana, Sara (Committee member) / Arizona State University (Publisher)
Created2017
135814-Thumbnail Image.png
Description
The two chapters of this thesis focus on different aspects of DNA and the properties of nucleic acids as the whole. Chapter 1 focuses on the structure of DNA and its relationship to enzymatic efficiency. Chapter 2 centers itself on threose nucleic acid and optimization of a step in the

The two chapters of this thesis focus on different aspects of DNA and the properties of nucleic acids as the whole. Chapter 1 focuses on the structure of DNA and its relationship to enzymatic efficiency. Chapter 2 centers itself on threose nucleic acid and optimization of a step in the path to its synthesis. While Chapter 1 discusses DNA and Uracil-DNA Glycosylase with regards to the base excision repair pathway, Chapter 2 focuses on chemical synthesis of an intermediate in the pathway to the synthesis of TNA, an analogous structure with a different saccharide in the sugar-phosphate backbone.
Chapter 1 covers the research under Dr. Levitus. Four oligonucleotides were reacted for zero, five, and thirty minutes with uracil-DNA glycosylase and subsequent addition of piperidine. These oligonucleotides were chosen based on their torsional rigidities as predicted by past research and predictions. The objective was to better understand the relationship between the sequence of DNA surrounding the incorrect base and the enzyme’s ability to remove said base in order to prepare the DNA for the next step of the base excision repair pathway. The first pair of oligonucleotides showed no statistically significant difference in enzymatic efficiency with p values of 0.24 and 0.42, while the second pair had a p value of 0.01 at the five-minute reaction. The second pair is currently being researched at different reaction times to determine at what point the enzyme seems to equilibrate and react semi-equally with all sequences of DNA.
Chapter 2 covers the research conducted under Dr. Chaput. Along the TNA synthesis pathway, the nitrogenous base must be added to the threofuranose sugar. The objective was to optimize the original protocol of Vorbrüggen glycosylation and determine if there were better conditions for the synthesis of the preferred regioisomer. This research showed that toluene and ortho-xylene were more preferable as solvents than the original anhydrous acetonitrile, as the amount of preferred isomer product far outweighed the amount of side product formed, as well as improving total yield overall. The anhydrous acetonitrile reaction had a final yield of 60.61% while the ortho-xylene system had a final yield of 94.66%, an increase of approximately 32%. The crude ratio of preferred isomer to side product was also improved, as it went from 18% undesired in anhydrous acetonitrile to 4% undesired in ortho-xylene, both values normalized to the preferred regioisomer.
ContributorsTamirisa, Ritika Sai (Author) / Levitus, Marcia (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Windman, Todd (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135875-Thumbnail Image.png
Description
With a quantum efficiency of nearly 100%, the electron transfer process that occurs within the reaction center protein of the photosynthetic bacteria Rhodobacter (Rh.) sphaeroides is a paragon for understanding the complexities, intricacies, and overall systemization of energy conversion and storage in natural systems. To better understand the way in

With a quantum efficiency of nearly 100%, the electron transfer process that occurs within the reaction center protein of the photosynthetic bacteria Rhodobacter (Rh.) sphaeroides is a paragon for understanding the complexities, intricacies, and overall systemization of energy conversion and storage in natural systems. To better understand the way in which photons of light are captured, converted into chemically useful forms, and stored for biological use, an investigation into the reaction center protein, specifically into its cascade of cofactors, was undertaken. The purpose of this experimentation was to advance our knowledge and understanding of how differing protein environments and variant cofactors affect the spectroscopic aspects of and electron transfer kinetics within the reaction of Rh. sphaeroides. The native quinone, ubiquinone, was extracted from its pocket within the reaction center protein and replaced by non-native quinones having different reduction/oxidation potentials. It was determined that, of the two non-native quinones tested—1,2-naphthaquinone and 9,10- anthraquinone—the substitution of the anthraquinone (lower redox potential) resulted in an increased rate of recombination from the P+QA- charge-separated state, while the substitution of the napthaquinone (higher redox potential) resulted in a decreased rate of recombination.
ContributorsSussman, Hallie Rebecca (Author) / Woodbury, Neal (Thesis director) / Redding, Kevin (Committee member) / Lin, Su (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
148192-Thumbnail Image.png
Description

Lyme disease is a common tick-borne illness caused by the Gram-negative bacterium Borrelia burgdorferi. An outer membrane protein of Borrelia burgdorferi, P66, has been suggested as a possible target for Lyme disease treatments. However, a lack of structural information available for P66 has hindered attempts to design medications to target

Lyme disease is a common tick-borne illness caused by the Gram-negative bacterium Borrelia burgdorferi. An outer membrane protein of Borrelia burgdorferi, P66, has been suggested as a possible target for Lyme disease treatments. However, a lack of structural information available for P66 has hindered attempts to design medications to target the protein. Therefore, this study attempted to find methods for expressing and purifying P66 in quantities that can be used for structural studies. It was found that by using the PelB signal sequence, His-tagged P66 could be directed to the outer membrane of Escherichia coli, as confirmed by an anti-His Western blot. Further attempts to optimize P66 expression in the outer membrane were made, pending verification via Western blotting. The ability to direct P66 to the outer membrane using the PelB signal sequence is a promising first step in determining the overall structure of P66, but further work is needed before P66 is ready for large-scale purification for structural studies.

ContributorsRamirez, Christopher Nicholas (Author) / Fromme, Petra (Thesis director) / Hansen, Debra (Committee member) / Department of Physics (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Molecular engineering is an emerging field that aims to create functional devices for modular purposes, particularly bottom-up design of nano-assemblies using mechanical and chemical methods to perform complex tasks. In this study, we present a novel method for constructing an RNA clamp using circularized RNA and a broccoli aptamer for

Molecular engineering is an emerging field that aims to create functional devices for modular purposes, particularly bottom-up design of nano-assemblies using mechanical and chemical methods to perform complex tasks. In this study, we present a novel method for constructing an RNA clamp using circularized RNA and a broccoli aptamer for fluorescence sensing. By designing a circular RNA with the broccoli aptamer and a complementary DNA strand, we created a molecular clamp that can stabilize the aptamer. The broccoli aptamer displays enhanced fluorescence when bound to its ligand, DFHBI-1T. Upon induction with this small molecule, the clamp can exhibit or destroy fluorescence. We demonstrated that we could control the fluorescence of the RNA clamp by introducing different complementary DNA strands, which regulate the level of fluorescence. Additionally, we designed allosteric control by introducing new DNA strands, making the system reversible. We explored the use of mechanical tension to regulate RNA function by attaching a spring-like activity through the RNA clamp to two points on the RNA surface. By adjusting the stiffness of the spring, we could control the tension between the two points and induce reversible conformational changes, effectively turning RNA function on and off. Our approach offers a simple and versatile method for creating RNA clamps with various applications, including RNA detection, regulation, and future nanodevice design. Our findings highlight the crucial role of mechanical forces in regulating RNA function, paving the way for developing new strategies for RNA manipulation, and potentially advancing molecular engineering. Although the current work is ongoing, we provide current progress of both theoretical and experimental calculations based on our findings.

ContributorsJoseph, Joel (Author) / Yan, Hao (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Lapinaite, Audrone (Committee member) / Barrett, The Honors College (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
171581-Thumbnail Image.png
Description
Molecular structures and dynamics in amorphous materials present unique experimental challenges compared with the characterization of crystalline solids. Liquids and glassy solids have many applications in industry such as ionic liquids for fuel cells or biomolecule stabilizing agents, enhancing pharmaceuticals dissolution rates, and modified high performance biopolymers like silk for

Molecular structures and dynamics in amorphous materials present unique experimental challenges compared with the characterization of crystalline solids. Liquids and glassy solids have many applications in industry such as ionic liquids for fuel cells or biomolecule stabilizing agents, enhancing pharmaceuticals dissolution rates, and modified high performance biopolymers like silk for textile, biomedical, drug delivery, among many others. Amorphous materials are metastable, with kinetic profiles of phase transitions depending on relaxation dynamics, thermal history, plus factors such as temperature, pressure, and humidity. Understanding molecular structure and phase transitions of amorphous states of small molecules and biopolymers is broadly important for realizing their applications. The structure of liquid and glassy states of the drugs carbamazepine (CBZ) and indomethacin (IMC) were studied with solid-state nuclear magnetic resonance (ssNMR) spectroscopy, high energy X-ray diffraction, Fourier Infrared Transform Spectroscopy (FTIR), differential scanning calorimetry (DSC), and Empirical Potential Structure Refinement (EPSR). Both drugs have multiple crystalline polymorphs with slow dissolution kinetics, necessitating stable glassy or polymer dispersed formulations. More hydrogen bonds per CBZ molecule and a larger distribution of oligomeric states in the glass versus the liquid than expected. The chlorobenzyl ring of crystalline and glassy IMC measured with ssNMR were surprisingly found to have similar mobility. Crucially, humidity strongly affects glass structure, highlighting the importance of combining modeling techniques like EPSR with careful sample preparation for proper interpretation. Highly basic protic ionic liquids with low ∆pKa were synthesized with metathesis rather than proton transfer and characterized using NMR and dielectric spectroscopy. Finally, the protein secondary structure of spider egg sac silk was studied using ssNMR, FTIR, and scanning electron microscopy. Tubuliform silk found in spider egg sacs has extensive β-sheet domains which form nanocrystallites within an amorphous matrix. Structural predictions and spectroscopic measurements of tubuliform silk solution are mostly α-helical, with the mechanism of structural rearrangement to the β-sheet rich fiber unknown. The movement of spiders during egg silk spinning make in situ experiments difficult practically. This work is the first observation that tubuliform silk of Argiope aurantia after liquid crystalline spinning exits the spinneret as a predominantly (~70%) β-sheet fiber.
ContributorsEdwards, Angela Diane (Author) / Yarger, Jeffery L (Thesis advisor) / Liu, Yan (Committee member) / Mujica, Vladimiro (Committee member) / Arizona State University (Publisher)
Created2022