Matching Items (31)
Filtering by

Clear all filters

149647-Thumbnail Image.png
Description
This thesis describes several approaches to next generation DNA sequencing via tunneling current method based on a Scanning Tunneling Microscope system. In chapters 5 and 6, preliminary results have shown that DNA bases could be identified by their characteristic tunneling signals. Measurements taken in aqueous buffered solution showed that single

This thesis describes several approaches to next generation DNA sequencing via tunneling current method based on a Scanning Tunneling Microscope system. In chapters 5 and 6, preliminary results have shown that DNA bases could be identified by their characteristic tunneling signals. Measurements taken in aqueous buffered solution showed that single base resolution could be achieved with economic setups. In chapter 7, it is illustrated that some ongoing measurements are indicating the sequence readout by making linear scan on a piece of short DNA oligomer. However, to overcome the difficulties of controlling DNA especially ssDNA movement, it is much better to have the tunneling measurement incorporated onto a robust nanopore device to realize sequential reading of the DNA sequence while it is being translocated.
ContributorsHuang, Shuo (Author) / Lindsay, Stuart (Thesis advisor) / Sankey, Otto (Committee member) / Tao, Nongjian (Committee member) / Drucker, Jeff (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2011
150402-Thumbnail Image.png
Description
This thesis describes several experiments based on carbon nanotube nanofludic devices and field-effect transistors. The first experiment detected ion and molecule translocation through one single-walled carbon nanotube (SWCNT) that spans a barrier between two fluid reservoirs. The electrical ionic current is measured. Translocation of small single stranded DNA oligomers is

This thesis describes several experiments based on carbon nanotube nanofludic devices and field-effect transistors. The first experiment detected ion and molecule translocation through one single-walled carbon nanotube (SWCNT) that spans a barrier between two fluid reservoirs. The electrical ionic current is measured. Translocation of small single stranded DNA oligomers is marked by large transient increases in current through the tube and confirmed by a PCR (polymerase chain reaction) analysis. Carbon nanotubes simplify the construction of nanopores, permit new types of electrical measurement, and open new avenues for control of DNA translocation. The second experiment constructed devices in which the interior of a single-walled carbon nanotube field-effect transistor (CNT-FET) acts as a nanofluidic channel that connects two fluid reservoirs, permitting measurement of the electronic properties of the SWCNT as it is wetted by an analyte. Wetting of the inside of the SWCNT by water turns the transistor on, while wetting of the outside has little effect. This finding may provide a new method to investigate water behavior at nanoscale. This also opens a new avenue for building sensors in which the SWCNT functions as an electronic detector. This thesis also presents some experiments that related to nanofabrication, such as construction of FET with tin sulfide (SnS) quantum ribbon. This work demonstrates the application of solution processed IV-VI semiconductor nanostructures in nanoscale devices.
ContributorsCao, Zhai (Author) / Lindsay, Stuart (Thesis advisor) / Vaiana, Sara (Committee member) / Ros, Robert (Committee member) / Marzke, Robert (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2011
150245-Thumbnail Image.png
Description
Nanofluidic devices in which one single-walled carbon nanotube (SWCNT) spans a barrier between two fluid reservoirs were constructed, enabling direct electrical measurement of the transport of ions and molecules. Ion current through these devices is about 2 orders of magnitude larger than that predicted from the bulk resistivity of the

Nanofluidic devices in which one single-walled carbon nanotube (SWCNT) spans a barrier between two fluid reservoirs were constructed, enabling direct electrical measurement of the transport of ions and molecules. Ion current through these devices is about 2 orders of magnitude larger than that predicted from the bulk resistivity of the electrolyte. Electroosmosis drives excess current, carried by cations, and is found to be the origin of giant ionic current through SWCNT as shown by building an ionic field-effect transistor with a gate electrode embedded in the fluid barrier. Wetting of inside of the semi-conducting SWCNT by water showed the change of its electronic property, turning the electronic SWCNT field-effect transistor to "on" state. These findings provide a new method to investigate and control the ion and molecule behavior at nanoscale.
ContributorsPang, Pei (Author) / Lindsay, Stuart (Thesis advisor) / Ros, Robert (Committee member) / Shumway, John (Committee member) / Tao, Nongjian (Committee member) / Menéndez, Jose (Committee member) / Arizona State University (Publisher)
Created2011
150206-Thumbnail Image.png
Description
Proteins are a fundamental unit in biology. Although proteins have been extensively studied, there is still much to investigate. The mechanism by which proteins fold into their native state, how evolution shapes structural dynamics, and the dynamic mechanisms of many diseases are not well understood. In this thesis, protein folding

Proteins are a fundamental unit in biology. Although proteins have been extensively studied, there is still much to investigate. The mechanism by which proteins fold into their native state, how evolution shapes structural dynamics, and the dynamic mechanisms of many diseases are not well understood. In this thesis, protein folding is explored using a multi-scale modeling method including (i) geometric constraint based simulations that efficiently search for native like topologies and (ii) reservoir replica exchange molecular dynamics, which identify the low free energy structures and refines these structures toward the native conformation. A test set of eight proteins and three ancestral steroid receptor proteins are folded to 2.7Å all-atom RMSD from their experimental crystal structures. Protein evolution and disease associated mutations (DAMs) are most commonly studied by in silico multiple sequence alignment methods. Here, however, the structural dynamics are incorporated to give insight into the evolution of three ancestral proteins and the mechanism of several diseases in human ferritin protein. The differences in conformational dynamics of these evolutionary related, functionally diverged ancestral steroid receptor proteins are investigated by obtaining the most collective motion through essential dynamics. Strikingly, this analysis shows that evolutionary diverged proteins of the same family do not share the same dynamic subspace. Rather, those sharing the same function are simultaneously clustered together and distant from those functionally diverged homologs. This dynamics analysis also identifies 77% of mutations (functional and permissive) necessary to evolve new function. In silico methods for prediction of DAMs rely on differences in evolution rate due to purifying selection and therefore the accuracy of DAM prediction decreases at fast and slow evolvable sites. Here, we investigate structural dynamics through computing the contribution of each residue to the biologically relevant fluctuations and from this define a metric: the dynamic stability index (DSI). Using DSI we study the mechanism for three diseases observed in the human ferritin protein. The T30I and R40G DAMs show a loss of dynamic stability at the C-terminus helix and nearby regulatory loop, agreeing with experimental results implicating the same regulatory loop as a cause in cataracts syndrome.
ContributorsGlembo, Tyler J (Author) / Ozkan, Sefika B (Thesis advisor) / Thorpe, Michael F (Committee member) / Ros, Robert (Committee member) / Kumar, Sudhir (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2011
152327-Thumbnail Image.png
Description
Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37-residue intrinsically disordered hormone involved in glucose regulation and gastric emptying. The aggregation of hIAPP into amyloid fibrils is believed to play a causal role in type 2 diabetes. To date, not much is known about the monomeric state

Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37-residue intrinsically disordered hormone involved in glucose regulation and gastric emptying. The aggregation of hIAPP into amyloid fibrils is believed to play a causal role in type 2 diabetes. To date, not much is known about the monomeric state of hIAPP or how it undergoes an irreversible transformation from disordered peptide to insoluble aggregate. IAPP contains a highly conserved disulfide bond that restricts hIAPP(1-8) into a short ring-like structure: N_loop. Removal or chemical reduction of N_loop not only prevents cell response upon binding to the CGRP receptor, but also alters the mass per length distribution of hIAPP fibers and the kinetics of fibril formation. The mechanism by which N_loop affects hIAPP aggregation is not yet understood, but is important for rationalizing kinetics and developing potential inhibitors. By measuring end-to-end contact formation rates, Vaiana et al. showed that N_loop induces collapsed states in IAPP monomers, implying attractive interactions between N_loop and other regions of the disordered polypeptide chain . We show that in addition to being involved in intra-protein interactions, the N_loop is involved in inter-protein interactions, which lead to the formation of extremely long and stable β-turn fibers. These non-amyloid fibers are present in the 10 μM concentration range, under the same solution conditions in which hIAPP forms amyloid fibers. We discuss the effect of peptide cyclization on both intra- and inter-protein interactions, and its possible implications for aggregation. Our findings indicate a potential role of N_loop-N_loop interactions in hIAPP aggregation, which has not previously been explored. Though our findings suggest that N_loop plays an important role in the pathway of amyloid formation, other naturally occurring IAPP variants that contain this structural feature are incapable of forming amyloids. For example, hIAPP readily forms amyloid fibrils in vitro, whereas the rat variant (rIAPP), differing by six amino acids, does not. In addition to being highly soluble, rIAPP is an effective inhibitor of hIAPP fibril formation . Both of these properties have been attributed to rIAPP's three proline residues: A25P, S28P and S29P. Single proline mutants of hIAPP have also been shown to kinetically inhibit hIAPP fibril formation. Because of their intrinsic dihedral angle preferences, prolines are expected to affect conformational ensembles of intrinsically disordered proteins. The specific effect of proline substitutions on IAPP structure and dynamics has not yet been explored, as the detection of such properties is experimentally challenging due to the low molecular weight, fast reconfiguration times, and very low solubility of IAPP peptides. High-resolution techniques able to measure tertiary contact formations are needed to address this issue. We employ a nanosecond laser spectroscopy technique to measure end-to-end contact formation rates in IAPP mutants. We explore the proline substitutions in IAPP and quantify their effects in terms of intrinsic chain stiffness. We find that the three proline mutations found in rIAPP increase chain stiffness. Interestingly, we also find that residue R18 plays an important role in rIAPP's unique chain stiffness and, together with the proline residues, is a determinant for its non-amyloidogenic properties. We discuss the implications of our findings on the role of prolines in IDPs.
ContributorsCope, Stephanie M (Author) / Vaiana, Sara M (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Ros, Robert (Committee member) / Lindsay, Stuart M (Committee member) / Ozkan, Sefika B (Committee member) / Arizona State University (Publisher)
Created2013
150984-Thumbnail Image.png
Description
Single molecules in a tunnel junction can now be interrogated reliably using chemically-functionalized electrodes. Monitoring stochastic bonding fluctuations between a ligand bound to one electrode and its target bound to a second electrode ("tethered molecule-pair" configuration) gives insight into the nature of the intermolecular bonding at a single molecule-pair level,

Single molecules in a tunnel junction can now be interrogated reliably using chemically-functionalized electrodes. Monitoring stochastic bonding fluctuations between a ligand bound to one electrode and its target bound to a second electrode ("tethered molecule-pair" configuration) gives insight into the nature of the intermolecular bonding at a single molecule-pair level, and defines the requirements for reproducible tunneling data. Importantly, at large tunnel gaps, there exists a regime for many molecules in which the tunneling is influenced more by the chemical identity of the molecules than by variability in the molecule-metal contact. Functionalizing a pair of electrodes with recognition reagents (the "free analyte" configuration) can generate a distinct tunneling signal when an analyte molecule is trapped in the gap. This opens up a new interface between chemistry and electronics with immediate implications for rapid sequencing of single DNA molecules.
ContributorsChang, Shuai (Author) / Lindsay, Stuart (Thesis advisor) / Ros, Robert (Committee member) / Zhang, Peiming (Committee member) / Tao, Nongjian (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2012
151211-Thumbnail Image.png
Description
CpG methylation is an essential requirement for the normal development of mammals, but aberrant changes in the methylation can lead to tumor progression and cancer. An in-depth understanding of this phenomenon can provide insights into the mechanism of gene repression. We present a study comparing methylated DNA and normal DNA

CpG methylation is an essential requirement for the normal development of mammals, but aberrant changes in the methylation can lead to tumor progression and cancer. An in-depth understanding of this phenomenon can provide insights into the mechanism of gene repression. We present a study comparing methylated DNA and normal DNA wrt its persistence length and contour length. Although, previous experiments and studies show no difference between the physical properties of the two, the data collected and interpreted here gives a different picture to the methylation phenomena and its effect on gene silencing. The study was extended to the artificially reconstituted chromatin and its interactions with the methyl CpG binding proteins were also probed.
ContributorsKaur, Parminder (Author) / Lindsay, Stuart (Thesis advisor) / Ros, Robert (Committee member) / Tao, Nongjian (Committee member) / Vaiana, Sara (Committee member) / Beckenstein, Oliver (Committee member) / Arizona State University (Publisher)
Created2012
137458-Thumbnail Image.png
Description
In this project, we introduce a type of microscopy which produces correlated topography and fluorescence lifetime images with nanometer resolution. This technique combines atomic force microscopy (AFM) and time resolved confocal fluorescence microscopy to conduct biological and materials research. This method is used to investigate nanophotonic effects on single fluorophores,

In this project, we introduce a type of microscopy which produces correlated topography and fluorescence lifetime images with nanometer resolution. This technique combines atomic force microscopy (AFM) and time resolved confocal fluorescence microscopy to conduct biological and materials research. This method is used to investigate nanophotonic effects on single fluorophores, including quantum dots and fluorescent molecules. For single fluorescent molecules, we investigate the effects of quenching of fluorescence with the probe of an atomic force microscope which is combined and synchronized with a confocal fluorescence lifetime microscope. For quantum dots, we investigate the correlation between the topographic and fluorescence data. With this method of combining an atomic force microscope with a confocal microscope, it is anticipated that there will be applications in nanomaterial characterization and life sciences; such as the determination of the structure of small molecular systems on surfaces, molecular interactions, as well as the structure and properties of fluorescent nanomaterials.
ContributorsWard, Alex Mark (Author) / Ros, Robert (Thesis director) / Shumway, John (Committee member) / Schulz, Olaf (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2013-05
149540-Thumbnail Image.png
Description
This dissertation features a compilation of studies concerning the biophysics of multicellular systems. I explore eukaryotic systems across length scales of the cell cytoskeleton to macroscopic scales of tissues. I begin with a general overview of the natural phenomena of life and a philosophy of investigating developmental systems in biology.

This dissertation features a compilation of studies concerning the biophysics of multicellular systems. I explore eukaryotic systems across length scales of the cell cytoskeleton to macroscopic scales of tissues. I begin with a general overview of the natural phenomena of life and a philosophy of investigating developmental systems in biology. The topics covered throughout this dissertation require a background in eukaryotic cell physiology, viscoelasticity, and processes of embryonic tissue morphogenesis. Following a brief background on these topics, I present an overview of the Subcellular Element Model (ScEM). This is a modeling framework which allows one to compute the dynamics of large numbers of three-dimensional deformable cells in multi-cellular systems. A primary focus of the work presented here is implementing cellular function within the framework of this model to produce biologically meaningful phenotypes. In this way, it is hoped that this modeling may inform biological understanding of the underlying mechanisms which manifest into a given cell or tissue scale phenomenon. Thus, all theoretical investigations presented here are motivated by and compared to experimental observations. With the ScEM modeling framework I first explore the passive properties of viscoelastic networks. Then as a direct extension of this work, I consider the active properties of cells, which result in biological behavior and the emergence of non-trivial biological phenotypes in cells and tissues. I then explore the possible role of chemotaxis as a mechanism of orchestrating large scale tissue morphogenesis in the early embryonic stages of amniotes. Finally I discuss the cross-sectional topology of proliferating epithelial tissues. I show how the Subcellular Element Model (ScEM) is a phenomenological model of finite elements whose interactions can be calibrated to describe the viscoelastic properties of biological materials. I further show that implementing mechanisms of cytoskeletal remodeling yields cellular and tissue phenotypes that are more and more biologically realistic. Particularly I show that structural remodeling of the cell cytoskeleton is crucial for large scale cell deformations. I provide supporting evidence that a chemotactic dipole mechanism is able to orchestrate the type of large scale collective cell movement observed in the chick epiblast during gastrulation and primitive streak formation. Finally, I show that cell neighbor histograms provide a potentially unique signature measurement of tissue topology; such measurements may find use in identifying cellular level phenotypes from a single snapshot micrograph.
ContributorsSandersius, Sebastian Ambrose (Author) / Newman, Timothy J (Thesis advisor) / Rez, Peter (Committee member) / Ros, Robert (Committee member) / Sankey, Otto F. (Committee member) / Tsen, Kong-Thon (Committee member) / Arizona State University (Publisher)
Created2011
134338-Thumbnail Image.png
Description
A scheme has been developed for finding the gas and temperature profiles in an environmental transmission electron microscope (ETEM), using COMSOL Multiphysics and the finite element method (FEM). This model should permit better correlation between catalyst structure and activity, by providing a more accurate understanding of gas composition than the

A scheme has been developed for finding the gas and temperature profiles in an environmental transmission electron microscope (ETEM), using COMSOL Multiphysics and the finite element method (FEM). This model should permit better correlation between catalyst structure and activity, by providing a more accurate understanding of gas composition than the assumption of homogeneity typically used. While more data is needed to complete the model, current progress has identified several details about the system and its ideal modeling approach.
It is found that at the low pressures and flowrates of catalysis in ETEM, natural and forced convection are negligible forms of heat transfer. Up to 250 °C, radiation is also negligible. Gas conduction, being enhanced at low pressures, dominates.
Similarly, mass transport is dominated by diffusion, which is most accurately described by the Maxwell-Stefan model. Bulk fluid flow is highly laminar, and in fact borders the line between continuum and molecular flow. The no-slip boundary condition does not apply here, and both viscous slip and thermal creep must be considered. In the porous catalyst pellet considered in this work, Knudsen diffusion dominates, with bulk flow being best described by the Darcy-Brinkman equation.
With these physics modelled, it appears as though the gas homogeneity assumption is not completely accurate, breaking down in the porous pellet where reactions occur. While these results are not yet quantitative, this trend is likely to remain in future model iterations. It is not yet clear how significant this deviation is, though methods are proposed to minimize it if necessary.
Some model-experiment mismatch has been found which must be further explored. Experimental data shows a pressure dependence on the furnace temperature at constant power, a trend as-yet unresolvable by the model. It is proposed that this relates to the breakdown of the assumption of fluid continuity at low pressures and small dimensions, though no compelling mathematical formulation has been found. This issue may have significant ramifications on ETEM and ETEM experiment design.
ContributorsLangdon, Jayse Tanner (Author) / Crozier, Peter (Thesis director) / Hildreth, Owen (Committee member) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05