Matching Items (8)
Filtering by

Clear all filters

133750-Thumbnail Image.png
Description
Seamless carbon fiber reinforced polymer matrix (CFRP) composites are being investigated in many structural applications with the purpose of withstanding the extreme pressures and maintaining stiffness in mechanical systems. This report focuses on: fabrication of CFRP tubes and end caps, the production of a pressurization system to test standards set

Seamless carbon fiber reinforced polymer matrix (CFRP) composites are being investigated in many structural applications with the purpose of withstanding the extreme pressures and maintaining stiffness in mechanical systems. This report focuses on: fabrication of CFRP tubes and end caps, the production of a pressurization system to test standards set by Fiber Reinforced Composite (FRC) Pipe and Fittings for Underground Fire Protection Service [1], developing a library for different damage types for seamless composite pipes, and evaluating pre-existing flaws with flash thermography, carrying out hydrostatic testing, and performing nondestructive testing (NDT) to characterize damage induced on the pipes such as cracking, crazing, and fiber breakage. The tasks outlined will be used to develop design guidelines for different combinations of loading systems.
ContributorsFoster, Collin William (Author) / Yekani Fard, Masoud (Thesis director) / Chattopadhyay, Aditi (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137618-Thumbnail Image.png
Description
Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can

Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can keep landfills active, and thus a potential groundwater threat for over a hundred years, I take an in depth look at the ability of bioreactor landfills to quickly stabilize waste. In the thesis I detail the current state of bioreactor landfill technologies, assessing the pros and cons of anaerobic and aerobic bioreactor technologies. Finally, with an industrial perspective, I conclude that moving on to bioreactor landfills as an alternative isn't as simple as it may first appear, and that it is a contextually specific solution that must be further refined before replacing current landfills.
ContributorsWhitten, George Avery (Author) / Kavazanjian, Edward (Thesis director) / Allenby, Braden (Committee member) / Houston, Sandra (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
135299-Thumbnail Image.png
Description
Essential to the field of petroleum engineering, well testing is done to determine the important physical characteristics of a reservoir. In the case of a constant production rate (as opposed to a constant pressure), the well pressure drop is a function of both time and the formation's boundary conditions. This

Essential to the field of petroleum engineering, well testing is done to determine the important physical characteristics of a reservoir. In the case of a constant production rate (as opposed to a constant pressure), the well pressure drop is a function of both time and the formation's boundary conditions. This pressure drop goes through several distinct stages before reaching steady state or semi-steady state production. This paper focuses on the analysis of a circular well with a closed outer boundary and details the derivation of a new approximation, intended for the transient stage, from an existing steady state solution. This new approximation is then compared to the numerical solution as well as an existing approximate solution. The new approximation is accurate with a maximum 10% margin of error well into the semi-steady state phase with that error decreasing significantly as the distance to the closed external boundary increases. More accurate over a longer period of time than the existing line source approximation, the relevance and applications of this new approximate solution deserve further exploration.
ContributorsKelso, Sean Andrew (Author) / Chen, Kangping (Thesis director) / Liao, Yabin (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Music (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
171930-Thumbnail Image.png
Description
Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to

Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to compare microbiomes and bioactivity from CH4-producing communities in contrasting spatial areas of arid landfills and to tests a new technology to biostimulate CH4 production (methanogenesis) from solid waste under dynamic environmental conditions controlled in the laboratory. My hypothesis was that the diversity and abundance of methanogenic Archaea in municipal solid waste (MSW), or its leachate, play an important role on CH4 production partially attributed to the group’s wide hydrogen (H2) consumption capabilities. I tested this hypothesis by conducting complementary field observations and laboratory experiments. I describe niches of methanogenic Archaea in MSW leachate across defined areas within a single landfill, while demonstrating functional H2-dependent activity. To alleviate limited H2 bioavailability encountered in-situ, I present biostimulant feasibility and proof-of-concepts studies through the amendment of zero valent metals (ZVMs). My results demonstrate that older-aged MSW was minimally biostimulated for greater CH4 production relative to a control when exposed to iron (Fe0) or manganese (Mn0), due to highly discernable traits of soluble carbon, nitrogen, and unidentified fluorophores found in water extracts between young and old aged, starting MSW. Acetate and inhibitory H2 partial pressures accumulated in microcosms containing old-aged MSW. In a final experiment, repeated amendments of ZVMs to MSW in a 600 day mesocosm experiment mediated significantly higher CH4 concentrations and yields during the first of three ZVM injections. Fe0 and Mn0 experimental treatments at mesocosm-scale also highlighted accelerated development of seemingly important, but elusive Archaea including Methanobacteriaceae, a methane-producing family that is found in diverse environments. Also, prokaryotic classes including Candidatus Bathyarchaeota, an uncultured group commonly found in carbon-rich ecosystems, and Clostridia; All three taxa I identified as highly predictive in the time-dependent progression of MSW decomposition. Altogether, my experiments demonstrate the importance of H2 bioavailability on CH4 production and the consistent development of Methanobacteriaceae in productive MSW microbiomes.
ContributorsReynolds, Mark Christian (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Wang, Xuan (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2022
157581-Thumbnail Image.png
Description
Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved

Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved in enhancing the methane gas generation in anaerobic digestion of activated sludge. However, no studies have been conducted regarding the effect of ZVM stimulation to Municipal Solid Waste (MSW) degradation. Therefore, a collaborative study was developed to manipulate microbial activity in the landfill bioreactors to favor methane production by adding ZVMs. This study focuses on evaluating the effects of added ZVM on the leachate generated from replicated lab scale landfill bioreactors. The specific objective was to investigate the effects of ZVMs addition on the organic and inorganic pollutants in leachate. The hypothesis here evaluated was that adding ZVM including ZVI and Zero Valent Manganese (ZVMn) will enhance the removal rates of the organic pollutants present in the leachate, likely by a putative higher rate of microbial metabolism. Test with six (4.23 gallons) bioreactors assembled with MSW collected from the Salt River Landfill and Southwest Regional Landfill showed that under 5 grams /liter of ZVI and 0.625 grams/liter of ZVMn additions, no significant difference was observed in the pH and temperature data of the leachate generated from these reactors. The conductivity data suggested the steady rise across all reactors over the period of time. The removal efficiency of sCOD was highest (27.112 mg/lit/day) for the reactors added with ZVMn at the end of 150 days for bottom layer, however the removal rate was highest (16.955 mg/lit/day) for ZVI after the end of 150 days of the middle layer. Similar trends in the results was observed in TC analysis. HPLC study indicated the dominance of the concentration of heptanoate and isovalerate were leachate generated from the bottom layer across all reactors. Heptanoate continued to dominate in the ZVMn added leachate even after middle layer injection. IC analysis concluded the chloride was dominant in the leachate generated from all the reactors and there was a steady increase in the chloride content over the period of time. Along with chloride, fluoride, bromide, nitrate, nitrite, phosphate and sulfate were also detected in considerable concentrations. In the summary, the addition of the zero valent metals has proved to be efficient in removal of the organics present in the leachate.
ContributorsPandit, Gandhar Abhay (Author) / Cadillo – Quiroz, Hinsby (Thesis advisor) / Olson, Larry (Thesis advisor) / Boyer, Treavor (Committee member) / Arizona State University (Publisher)
Created2019
131645-Thumbnail Image.png
Description
This thesis is part of a larger research project, conducted by Elizabeth Stallings Young, which aims to improve understanding about the factors controlling the process of MIDP and the interaction between the biochemical reactions and the hydrological properties of soils treated with MIDP. Microbially Induced Desaturation and Precipitation (MIDP) is

This thesis is part of a larger research project, conducted by Elizabeth Stallings Young, which aims to improve understanding about the factors controlling the process of MIDP and the interaction between the biochemical reactions and the hydrological properties of soils treated with MIDP. Microbially Induced Desaturation and Precipitation (MIDP) is a bio-geotechnical process by which biogenic gas production and calcite mineral bio-cementation are induced in the pore space between the soil particles, which can mitigate earthquake induced liquefaction (Kavazanjian et al. 2015). In this process substrates are injected which stimulate indigenous nitrate reducing bacteria to produce nitrogen and carbon dioxide gas, while precipitating calcium carbonate minerals. The biogenic gas production has been shown to dampen pore pressure build up under dynamic loading conditions and significantly increase liquefaction resistance (Okamura and Soga 2006), while the precipitation of calcium carbonate minerals cements adjacent granular particles together. The objective of this thesis was to analyze the recorded pore pressure development as a result of biogenic gas formation and migration, over the entire two-dimensional flow field, by generating dynamic pressure contour plots, using MATLAB and ImageJ software. The experiment was run in a mesoscale tank that was approximately 114 cm tall, 114 cm wide and 5.25 cm thick. Substrate was flushed through the soil body and the denitrifying reaction occurred, producing gas and correspondingly, pressure. The pressure across the tank was recorded with pore pressure sensors and was loaded into a datalogger. This time sensitive data file was loaded into a MATLAB script, MIDPCountourGen.m, to create pressure contours for the tank. The results from this thesis include the creation of MIDPContourGen.m and a corresponding How-To Guide and pore pressure contours for the F60 tank. This thesis concluded that the MIDP reaction takes a relatively short amount of time and that the residual pressure in the tank after the water flush on day 17 offers a proof of effect of the MIDP reaction.
ContributorsCoppinger, Kristina Marie (Author) / van Paassen, Leon (Thesis director) / Kavazanjian, Edward (Committee member) / Stallings-Young, Elizabeth (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131357-Thumbnail Image.png
Description
The goal of this study was to explore the relationship between locus of control and the influence of an unethical authority figure. This research is a preliminary, exploratory study given research design limits. It was hypothesized that subjects oriented towards internal locus of control are better able to resist pressure

The goal of this study was to explore the relationship between locus of control and the influence of an unethical authority figure. This research is a preliminary, exploratory study given research design limits. It was hypothesized that subjects oriented towards internal locus of control are better able to resist pressure from an unethical authority figure. Subjects oriented towards the powerful others and chance orientations were hypothesized to be less able to resist pressure from an unethical authority figure. The results found that the presence of an unethical authority figure had little to no influence on self-perceived unethical decision-making; the difference in unethical behavior between cases with an authority figure present and without one present was not statistically significant. Further, no support was found for the hypotheses as no statistically significant relationship between locus of control orientations and the difference between the control case and test case was found (R2 = 0.02, model P-value > 0.05). Further analysis confirmed the results of Detert et al. (2008), finding no relationship between survey subjects’ locus of control orientations and unethical decision-making. Additional analysis indicates a relationship between unethical decision-making and gender (B = -5.14, P = 0.03, P < 0.05), providing some interesting avenues for future research.
ContributorsAmorosi, Kaitlin (Author) / Samuelson, Melissa (Thesis director) / Orpurt, Steven (Committee member) / Department of Finance (Contributor) / School of Accountancy (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
164819-Thumbnail Image.png
Description
Manufacturing production is limited by three main factors, cost, both overall and on a per unit basis, final product quality, and process repeatability or frequency. Even producing small objects through the casting of epoxy resin, a liquid substance capable of hardening when in contact with a catalyst material presents these

Manufacturing production is limited by three main factors, cost, both overall and on a per unit basis, final product quality, and process repeatability or frequency. Even producing small objects through the casting of epoxy resin, a liquid substance capable of hardening when in contact with a catalyst material presents these same issues. There are three distinct areas of epoxy resin casting influenced by each of these manufacturing factors, the material used to create molds, the air process applied to minimize defects, and resin demold time. This investigation was designed to determine the impact the three factors of manufacturing production have on the casting epoxy resin. Each category had numerous tests conducted to determine the best combination of production in terms of low cost, high quality, and high levels of repeatability. Ultimately, the best combination was the use of a platinum silicone called Mold Star 15, a pressure chamber, and an epoxy resin with a 12-hour cure time, called Amazing Resin. The final cost to create 100 products is $410.85. However, it should be noted for the highest quality dice, the utilization of a pressure chamber is required while the mold materials are interchangeable.
ContributorsFoster, Whitney (Author) / Delp, Deana (Thesis director) / Rajadas, John (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05