Matching Items (57)
Filtering by

Clear all filters

187384-Thumbnail Image.png
Description
Alkali activated mine tailing-slag blends and mine tailing-cement blends containing mine tailings as the major binder constituent are evaluated for their setting time behavior, reactivity properties, flow characteristics, and compressive strengths. Liquid sodium silicate and sodium hydroxide are used as the activator solution. The effects of varying alkali oxide-to-powder ratio

Alkali activated mine tailing-slag blends and mine tailing-cement blends containing mine tailings as the major binder constituent are evaluated for their setting time behavior, reactivity properties, flow characteristics, and compressive strengths. Liquid sodium silicate and sodium hydroxide are used as the activator solution. The effects of varying alkali oxide-to-powder ratio (n value) and silicon oxide-to-alkali oxide ratio (Ms value) is explored. The reactivity of all blends prepared in this study is studied using an isothermal calorimeter. Mine tailing-cement blends show a higher initial heat release peak than mine tailing-slag blends, whereas their cumulative heat release is comparable for higher n values of 0.050 to 0.100. Compressive strength tests and rheological studies were done for the refined blends selected based on setting time criterion. Setting times and compressive strengths are found to depend significantly on the activator parameters and binder compositions, allowing fine-tuning of the mix proportion parameters based on the intended end applications. The compressive strength of the selected mine tailing-slag blends and mine tailing-cement blends are in the range of 7-40 MPa and 4-11 MPa, respectively. Higher compressive strength is generally achieved at lower Ms and higher n values for mine tailing-slag blends, while a higher Ms yields better compressive strength in the case of mine tailing-cement blends. Rheological studies indicate a decrease in yield stress and viscosity with increase in the replacement ratio, while a higher activator concentration increase both. Oscillatory shear studies were used to evaluate the storage modulus and loss modulus of the mine tailing binders. The paste is seen to exhibit a more elastic behavior at n values of 0.05 and 0.075, however the viscous behavior is seen to dominate at higher n value of 0.1 at similar replacement ratios and Ms value. A higher Ms value is also seen to increase the onset point of the drop in both the storage and loss modulus of the pastes. The studied also investigated the potential use of mine tailing blends for coating applications. The pastes with higher alkalinity showed a lesser crack percentage, with a 10% slag replacement ratio having a better performance compared to 20% and 30% slag replacement ratios. Overall, the study showed that the activation parameters and mine tailings replacement level have a significant influence on the properties of both mine tailing-slag binders and mine tailing-cement binders, thereby allowing selection of suitable mix design for the desired end application, allowing a sustainable approach to dispose the mine tailings waste
ContributorsRamasamy Jeyaprakash, Rijul Kanth (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2023
187725-Thumbnail Image.png
Description
Composites are replacing conventional materials in aerospace applications due to their light weight, non-corrosiveness, and high specific strength. This thesis aims to characterize the input data for IM7-8552 unidirectional composite to support MAT213, an orthotropic elasto-plastic damage material model and MAT_186, a mixed mode cohesive zone model used to model

Composites are replacing conventional materials in aerospace applications due to their light weight, non-corrosiveness, and high specific strength. This thesis aims to characterize the input data for IM7-8552 unidirectional composite to support MAT213, an orthotropic elasto-plastic damage material model and MAT_186, a mixed mode cohesive zone model used to model delamination. MAT_213 in conjunction with MAT_186 can be used to predict the behavior of composite under crush and impact loads including delamination. MAT_213 requires twelve sets of stress-strain curves, direction-dependent material constants, and flow rule coefficients as input. All the necessary inputs are obtained through the post-processing of a total of twelve distinct quasi-static and room temperature (QS-RT) experiments. MAT_186 is driven by a set of Mode I and Mode II fracture parameters and traction separation laws, a constitutive law that derives the relationship between stresses and relative displacements at integration points of cohesive elements. Obtaining cohesive law parameters experimentally is a tedious process as it requires close monitoring of the crack length during the test, which is a difficult task to achieve with accuracy even after using sophisticated equipment such as Digital Image Correlation (DIC). In this thesis, a numerical inverse analysis method to precisely predict these parameters by using finite element analysis with cohesive zone modeling and response surface methodology (RSM) is proposed. Three steps comprise RSM. The process in Step 1 involves calculating the root mean square error between the finite element and experimental load-displacement curves to produce the response surface. In step 2, the response surface is fitted with a second-order polynomial using the Levenberg-Marquardt algorithm. In step 3, an optimization problem is solved by minimizing the fitted function to find the optimum cohesive zone parameters. Finally, the obtained input for MAT_213 and MAT_186 material models is validated by performing a quasi-isotropic tension test simulation.
ContributorsRaihan, Mohammed (Author) / Rajan, Subramaniam (Thesis advisor) / Neithalath, Narayanan (Committee member) / Hoover, Christian (Committee member) / Yellavajjala, Ravi (Committee member) / Arizona State University (Publisher)
Created2023
187867-Thumbnail Image.png
Description
Concrete develops strength rapidly after mixing and is highly influenced by temperature and curing process. The material characteristics and the rate of property development, along with the exposure conditions influences volume change mechanisms in concrete, and the cracking propensity of the mixtures. Furthermore, the structure geometry (due to restraint as

Concrete develops strength rapidly after mixing and is highly influenced by temperature and curing process. The material characteristics and the rate of property development, along with the exposure conditions influences volume change mechanisms in concrete, and the cracking propensity of the mixtures. Furthermore, the structure geometry (due to restraint as well as the surface area-to-volume ratio) also influences shrinkage and cracking. Thus, goal of this research is to better understand and predict shrinkage cracking in concrete slab systems under different curing conditions. In this research, different concrete mixtures are evaluated on their propensity to shrink based on free shrinkage and restrained shrinkage tests.Furthermore, from the data obtained from restrained ring test, a casted slab is measured for shrinkage. Effects of different orientation of restraints are studied and compared to better understand the shrinking behavior of the concrete mixtures. The results show that the maximum shrinkage is near the edges of the slab and decreases towards the center. Shrinkage near the edges with no restraint is found out to be more than the shrinkage towards the edges with restraining effects.
ContributorsNimbalkar, Atharwa Samir (Author) / Neithalath, Narayanan (Thesis advisor) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam (Committee member) / Arizona State University (Publisher)
Created2023
156825-Thumbnail Image.png
Description
Being a remarkably versatile and inexpensive building material, concrete has found tremendous use in development of modern infrastructure and is the most widely used material in the world. Extensive research in the field of concrete has led to the development of a wide array of concretes with applications ranging from

Being a remarkably versatile and inexpensive building material, concrete has found tremendous use in development of modern infrastructure and is the most widely used material in the world. Extensive research in the field of concrete has led to the development of a wide array of concretes with applications ranging from building of skyscrapers to paving of highways. These varied applications require special cementitious composites which can satisfy the demand for enhanced functionalities such as high strength, high durability and improved thermal characteristics among others.

The current study focuses on the fundamental understanding of such functional composites, from their microstructural design to macro-scale application. More specifically, this study investigates three different categories of functional cementitious composites. First, it discusses the differences between cementitious systems containing interground and blended limestone with and without alumina. The interground systems are found to outperform the blended systems due to differential grinding of limestone. A novel approach to deduce the particle size distribution of limestone and cement in the interground systems is proposed. Secondly, the study delves into the realm of ultra-high performance concrete, a novel material which possesses extremely high compressive-, tensile- and flexural-strength and service life as compared to regular concrete. The study presents a novel first principles-based paradigm to design economical ultra-high performance concretes using locally available materials. In the final part, the study addresses the thermal benefits of a novel type of concrete containing phase change materials. A software package was designed to perform numerical simulations to analyze temperature profiles and thermal stresses in concrete structures containing PCMs.

The design of these materials is accompanied by material characterization of cementitious binders. This has been accomplished using techniques that involve measurement of heat evolution (isothermal calorimetry), determination and quantification of reaction products (thermo-gravimetric analysis, x-ray diffraction, micro-indentation, scanning electron microscopy, energy-dispersive x-ray spectroscopy) and evaluation of pore-size distribution (mercury intrusion porosimetry). In addition, macro-scale testing has been carried out to determine compression, flexure and durability response. Numerical simulations have been carried out to understand hydration of cementitious composites, determine optimum particle packing and determine the thermal performance of these composites.
ContributorsArora, Aashay (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Chawla, Nikhilesh (Committee member) / Hoover, Christian G (Committee member) / Arizona State University (Publisher)
Created2018
156798-Thumbnail Image.png
Description
Phase change materials (PCMs) are combined sensible-and-latent thermal energy storage materials that can be used to store and dissipate energy in the form of heat. PCMs incorporated into wall-element systems have been well-studied with respect to energy efficiency of building envelopes. New applications of PCMs in infrastructural concrete, e.g., for

Phase change materials (PCMs) are combined sensible-and-latent thermal energy storage materials that can be used to store and dissipate energy in the form of heat. PCMs incorporated into wall-element systems have been well-studied with respect to energy efficiency of building envelopes. New applications of PCMs in infrastructural concrete, e.g., for mitigating early-age cracking and freeze-and-thaw induced damage, have also been proposed. Hence, the focus of this dissertation is to develop a detailed understanding of the physic-chemical and thermo-mechanical characteristics of cementitious systems and novel coating systems for wall-elements containing PCM. The initial phase of this work assesses the influence of interface properties and inter-inclusion interactions between microencapsulated PCM, macroencapsulated PCM, and the cementitious matrix. The fact that these inclusions within the composites are by themselves heterogeneous, and contain multiple components necessitate careful application of models to predict the thermal properties. The next phase observes the influence of PCM inclusions on the fracture and fatigue behavior of PCM-cementitious composites. The compliant nature of the inclusion creates less variability in the fatigue life for these composites subjected to cyclic loading. The incorporation of small amounts of PCM is found to slightly improve the fracture properties compared to PCM free cementitious composites. Inelastic deformations at the crack-tip in the direction of crack opening are influenced by the microscale PCM inclusions. After initial laboratory characterization of the microstructure and evaluation of the thermo-mechanical performance of these systems, field scale applicability and performance were evaluated. Wireless temperature and strain sensors for smart monitoring were embedded within a conventional portland cement concrete pavement (PCCP) and a thermal control smart concrete pavement (TCSCP) containing PCM. The TCSCP exhibited enhanced thermal performance over multiple heating and cooling cycles. PCCP showed significant shrinkage behavior as a result of compressive strains in the reinforcement that were twice that of the TCSCP. For building applications, novel PCM-composites coatings were developed to improve and extend the thermal efficiency. These coatings demonstrated a delay in temperature by up to four hours and were found to be more cost-effective than traditional building insulating materials.

The results of this work prove the feasibility of PCMs as a temperature-regulating technology. Not only do PCMs reduce and control the temperature within cementitious systems without affecting the rate of early property development but they can also be used as an auto-adaptive technology capable of improving the thermal performance of building envelopes.
ContributorsAguayo, Matthew Joseph (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Underwood, Benjamin (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2018
156736-Thumbnail Image.png
Description

Asphalt binder is a complex viscoelastic hydrocarbon, whose performance depends upon interaction between its physical and chemical properties, both of which are equally important to the successful understanding of the material. Researchers have proposed various models linking linear viscoelastic (LVE) and microstructural parameters. However, none of these parameters provide insight

Asphalt binder is a complex viscoelastic hydrocarbon, whose performance depends upon interaction between its physical and chemical properties, both of which are equally important to the successful understanding of the material. Researchers have proposed various models linking linear viscoelastic (LVE) and microstructural parameters. However, none of these parameters provide insight into the relationship in the non- linear viscoelastic NLVE domain. The main goals of this dissertation are two fold. The first goal is to utilize the technique of Laser Desorption Mass Spectroscopy (LDMS) to relate the molecular structure of asphalt binders to its viscoelastic properties. The second goal of the study is to utilize different NLVE characterization tools and analysis procedures to get a clear understanding of the NLVE behavior of the asphalt binders. The goals of the study are divided into four objectives; 1) Performing the LDMS test on asphalt binder to develop at the molecular weight distributions for different asphalts, 2) Characterizing LVE properties of Arizona asphalt binders, 3) Development of relationship between molecular structure and linear viscoelasticity, 4) Understanding NLVE behavior of asphalt binders through three different characterization methods and analysis techniques.

In this research effort, a promising physico-chemical relationship is developed between number average molecular weight and width of relaxation spectrum by utilizing the data from LVE characterization and the molecular weight distribution from LDMS. The relationship states that as the molecular weight of asphalt binders increase, they require more time to relax the developed stresses. Also, NLVE characterization was carried out at intermediate and high temperatures using three different tests, time sweep fatigue test, repeated stress/strain sweep test and Multiple Stress Creep and Recovery (MSCR) test. For the intermediate temperature fatigue tests, damage characterization was conducted by applying the S-VECD model and it was found that aged binders possess greater fatigue resistance than unaged binders. Using the high temperature LAOS tests, distortion was observed in the stress-strain relationships and the data was analyzed using a Fourier transform based tool called MITlaos, which deconvolves stress strain data into harmonic constituents and aids in identification of non-linearity by detecting higher order harmonics. Using the peak intensities observed at higher harmonic orders, non-linearity was quantified through a parameter termed as “Q”, which in future applications can be used to relate to asphalt chemical parameters. Finally, the last NLVE characterization carried out was the MSCR test, where the focus was on the scrutiny of the Jnrdiff parameter. It was found that Jnrdiff is not a capable parameter to represent the stress-sensitivity of asphalt binders. The developed alternative parameter Jnrslope does a better job of not only being a representative parameter of stress sensitivity but also for temperature sensitivity.

ContributorsGundla, Akshay (Author) / Underwood, Benjamin S (Thesis advisor) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael S. (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2018
Description
A comprehensive study was performed on non-proprietary ultra-high-performance concrete (UHPC) material and several design methods were suggested based on numerous experimental results. Several sets of compression tests, direct tensile tests, and flexural tests were performed on UHPC to provide a better understanding of the mechanisms involved in the mechanical behavior

A comprehensive study was performed on non-proprietary ultra-high-performance concrete (UHPC) material and several design methods were suggested based on numerous experimental results. Several sets of compression tests, direct tensile tests, and flexural tests were performed on UHPC to provide a better understanding of the mechanisms involved in the mechanical behavior of the fiber reinforced material. In addition to compressive tests, flexural tests, based on ASTM C1609 and EN 14651, were performed. The effect of the strain rate on the UHPC material was also investigated through the high-speed tensile tests at different strain rates. Alongside the usual measurement tools such as linear variable differential transformers (LVDT) and clip gages, digital image correlation (DIC) method was also used to capture the full-range deformations in the samples and localized crack propagations. Analytical approaches were suggested, based on the experimental results of the current research and other research groups, to provide design solutions for different applications and design approaches for UHPC and hybrid reinforced concrete (HRC) sections. The suggested methods can be used both in the ultimate limit state (ULS) and the serviceability limit state (SLS) design methods. Closed form relationships, based on the non-linear design of reinforced concrete, were used in the calculation of the load-deflection response of UHPC. The procedures were used in obtaining material properties from the flexural data using procedures that are based on back-calculation of material properties from the experimental results. Model simulations were compared with other results available in the literature. Performance of flexural reinforced UHPC concrete beam sections tested under different types of loading was addressed using a combination of fibers and rebars. The same analytical approach was suggested for the fiber reinforced concrete (FRC) sections strengthened (rehabilitated) by fiber reinforced polymers (FRP) and textile reinforced concrete (TRC). The objective is to validate the proper design procedures for flexural members as well as connection elements. The proposed solutions can be used to reduce total reinforcement by means of increasing the ductility of the FRC, HRC, and UHPC members in order to meet the required flexural reinforcement, which in some cases leads to total elimination of rebars.
ContributorsKianmofrad, Farrokh (Author) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam Dharma (Committee member) / Hoover, Christian G. (Committee member) / Arizona State University (Publisher)
Created2018
Description
With the growth of global population, the demand for sustainable infrastructure is significantly increasing. Substructures with appropriate materials are required to be built in or above soil that can support the massive volume of construction demand. However, increased structural requirements often require ground improvement to increase the soil capacity. Moreover,

With the growth of global population, the demand for sustainable infrastructure is significantly increasing. Substructures with appropriate materials are required to be built in or above soil that can support the massive volume of construction demand. However, increased structural requirements often require ground improvement to increase the soil capacity. Moreover, certain soils are prone to liquefaction during an earthquake, which results in significant structural damage and loss of lives. While various soil treatment methods have been developed in the past to improve the soil’s load carrying ability, most of these traditional treatment methods have been found either hazardous and may cause irreversible damage to natural environment, or too disruptive to use beneath or adjacent to existing structures. Thus, alternative techniques are required to provide a more natural and sustainable solution. Biomediated methods of strengthening soil through mineral precipitation, in particular through microbially induced carbonate precipitation (MICP), have recently emerged as a promising means of soil improvement. In MICP, the precipitation of carbonate (usually in the form of calcium carbonate) is mediated by microorganisms and the process is referred to as biomineralization. The precipitated carbonate coats soil particles, precipitates in the voids, and bridges between soil particles, thereby improving the mechanical properties (e.g., strength, stiffness, and dilatancy). Although it has been reported that the soil’s mechanical properties can be extensively enhanced through MICP, the micro-scale mechanisms that influence the macro-scale constitutive response remain to be clearly explained.

The utilization of alternative techniques such as MICP requires an in-depth understanding of the particle-scale contact mechanisms and the ability to predict the improvement in soil properties resulting from calcite precipitation. For this purpose, the discrete element method (DEM), which is extensively used to investigate granular materials, is adopted in this dissertation. Three-dimensional discrete element method (DEM) based numerical models are developed to simulate the response of bio-cemented sand under static and dynamic loading conditions and the micro-scale mechanisms of MICP are numerically investigated. Special focus is paid to the understanding of the particle scale mechanisms that are dominant in the common laboratory scale experiments including undrained and drained triaxial compression when calcite bridges are present in the soil, that enhances its load capacity. The mechanisms behind improvement of liquefaction resistance in cemented sands are also elucidated through the use of DEM. The thesis thus aims to provide the fundamental link that is important in ensuring proper material design for granular materials to enhance their mechanical performance.
ContributorsYang, Pu (Author) / Neithalath, Narayanan (Thesis advisor) / Kavazanjian, Edward (Committee member) / Rajan, S.D. (Committee member) / Mobasher, Barzin (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2018
154430-Thumbnail Image.png
Description
The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites

The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in individual or bundle form or two/three dimensional woven, bonded or knitted textiles. Traditional fiber reinforced concrete (FRC) use random dispersed chopped fibers in the matrix at a low volume fractions, typically 1-2% to avoid to avoid fiber agglomeration and balling. In conventional FRC, fracture localization occurs immediately after the first crack, resulting in only minor improvement in toughness and tensile strength. However in SHCC systems, distribution of cracking throughout the specimen is facilitated by the fiber bridging mechanism. Influence of material properties of yarn, composition, geometry and weave patterns of textile in the behavior of laminated SHCC skin composites were investigated. Contribution of the cementitious matrix in the early age and long-term performance of laminated composites was studied with supplementary cementitious materials such as fly ash, silica fume, and wollastonite. A closed form model with classical laminate theory and ply discount method, coupled with a damage evolution model was utilized to simulate the non-linear tensile response of these composite materials. A constitutive material model developed earlier in the group was utilized to characterize and correlate the behavior of these structural composites under uniaxial tension and flexural loading responses. Development and use of analytical models enables optimal design for application of these materials in structural applications. Another area of immediate focus is the development of new construction products from SHCC laminates such as angles, channels, hat sections, closed sections with optimized cross sections. Sandwich composites with stress skin-cellular core concept were also developed to utilize strength and ductility of fabric reinforced skin in addition to thickness, ductility, and thermal benefits of cellular core materials. The proposed structurally efficient and durable sections promise to compete with wood and light gage steel based sections for lightweight construction and panel application
ContributorsDey, Vikram (Author) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Neithalath, Narayanan (Committee member) / Underwood, Benjamin (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2016
153815-Thumbnail Image.png
Description
Increased priority on the minimization of environmental impacts of conventional construction materials in recent years has motivated increased use of waste materials or bi-products such as fly ash, blast furnace slag with a view to reduce or eliminate the manufacturing/consumption of ordinary portland cement (OPC) which accounts for approximately 5-7%

Increased priority on the minimization of environmental impacts of conventional construction materials in recent years has motivated increased use of waste materials or bi-products such as fly ash, blast furnace slag with a view to reduce or eliminate the manufacturing/consumption of ordinary portland cement (OPC) which accounts for approximately 5-7% of global carbon dioxide emission. The current study explores, for the first time, the possibility of carbonating waste metallic iron powder to develop carbon-negative sustainable binder systems for concrete. The fundamental premise of this work is that metallic iron will react with aqueous CO2 under controlled conditions to form complex iron carbonates which have binding capabilities. The compressive and flexural strengths of the chosen iron-based binder systems increase with carbonation duration and the specimens carbonated for 4 days exhibit mechanical properties that are comparable to those of companion ordinary portland cement systems. The optimal mixture proportion and carbonation regime for this non-conventional sustainable binder is established based on the study of carbonation efficiency of a series of mixtures using thermogravimetric analysis. The pore- and micro-structural features of this novel binding material are also evaluated. The fracture response of this novel binder is evaluated using strain energy release rate and measurement of fracture process zone using digital image correlation (DIC). The iron-based binder system exhibits significantly higher strain energy release rates when compared to those of the OPC systems in both the unreinforced and glass fiber reinforced states. The iron-based binder also exhibits higher amount of area of fracture process zone due to its ability to undergo inelastic deformation facilitated by unreacted metallic iron particle inclusions in the microstructure that helps crack bridging /deflection. The intrinsic nano-mechanical properties of carbonate reaction product are explored using statistical nanoindentation technique coupled with a stochastic deconvolution algorithm. Effect of exposure to high temperature (up to 800°C) is also studied. Iron-based binder shows significantly higher residual flexural strength after exposure to high temperatures. Results of this comprehensive study establish the viability of this binder type for concrete as an environment-friendly and economical alternative to OPC.
ContributorsDas, Sumanta (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, S.D. (Committee member) / Mobasher, Barzin (Committee member) / Marzke, Robert (Committee member) / Chawla, Nikhilesh (Committee member) / Stone, David (Committee member) / Arizona State University (Publisher)
Created2015