Matching Items (46)
Filtering by

Clear all filters

150433-Thumbnail Image.png
Description

The current method of measuring thermal conductivity requires flat plates. For most common civil engineering materials, creating or extracting such samples is difficult. A prototype thermal conductivity experiment had been developed at Arizona State University (ASU) to test cylindrical specimens but proved difficult for repeated testing. In this study, enhancements

The current method of measuring thermal conductivity requires flat plates. For most common civil engineering materials, creating or extracting such samples is difficult. A prototype thermal conductivity experiment had been developed at Arizona State University (ASU) to test cylindrical specimens but proved difficult for repeated testing. In this study, enhancements to both testing methods were made. Additionally, test results of cylindrical testing were correlated with the results from identical materials tested by the Guarded Hot&ndashPlate; method, which uses flat plate specimens. In validating the enhancements made to the Guarded Hot&ndashPlate; and Cylindrical Specimen methods, 23 tests were ran on five different materials. The percent difference shown for the Guarded Hot&ndashPlate; method was less than 1%. This gives strong evidence that the enhanced Guarded Hot-Plate apparatus in itself is now more accurate for measuring thermal conductivity. The correlation between the thermal conductivity values of the Guarded Hot&ndashPlate; to those of the enhanced Cylindrical Specimen method was excellent. The conventional concrete mixture, due to much higher thermal conductivity values compared to the other mixtures, yielded a P&ndashvalue; of 0.600 which provided confidence in the performance of the enhanced Cylindrical Specimen Apparatus. Several recommendations were made for the future implementation of both test methods. The work in this study fulfills the research community and industry desire for a more streamlined, cost effective, and inexpensive means to determine the thermal conductivity of various civil engineering materials.

ContributorsMorris, Derek (Author) / Kaloush, Kamil (Thesis advisor) / Mobasher, Barzin (Committee member) / Phelan, Patrick E (Committee member) / Arizona State University (Publisher)
Created2011
135448-Thumbnail Image.png
Description
Concrete stands at the forefront of the construction industry as one of the most useful building materials. Economic and efficient improvements in concrete strengthening and manufacturing are widely sought to continuously improve the performance of the material. Fiber reinforcement is a significant technique in strengthening precast concrete, but manufacturing limitations

Concrete stands at the forefront of the construction industry as one of the most useful building materials. Economic and efficient improvements in concrete strengthening and manufacturing are widely sought to continuously improve the performance of the material. Fiber reinforcement is a significant technique in strengthening precast concrete, but manufacturing limitations are common which has led to reliance on steel reinforcement. Two-dimensional textile reinforcement has emerged as a strong and efficient alternative to both fiber and steel reinforced concrete with pultrusion manufacturing shown as one of the most effective methods of precasting concrete. The intention of this thesis project is to detail the components, functions, and outcomes shown in the development of an automated pultrusion system for manufacturing textile reinforced concrete (TRC). Using a preexisting, manual pultrusion system and current-day manufacturing techniques as a basis, the automated pultrusion system was designed as a series of five stations that centered on textile impregnation, system driving, and final pressing. The system was then constructed in the Arizona State University Structures Lab over the course of the spring and summer of 2015. After fabricating each station, a computer VI was coded in LabVIEW software to automatically drive the system. Upon completing construction of the system, plate and angled structural sections were then manufactured to verify the adequacy of the technique. Pultruded TRC plates were tested in tension and flexure while full-scale structural sections were tested in tension and compression. Ultimately, the automated pultrusion system was successful in establishing an efficient and consistent manufacturing process for continuous TRC sections.
ContributorsBauchmoyer, Jacob Macgregor (Author) / Mobasher, Barzin (Thesis director) / Neithalath, Narayanan (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / The Design School (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
152177-Thumbnail Image.png
Description
Manufacture of building materials requires significant energy, and as demand for these materials continues to increase, the energy requirement will as well. Offsetting this energy use will require increased focus on sustainable building materials. Further, the energy used in building, particularly in heating and air conditioning, accounts for 40 percent

Manufacture of building materials requires significant energy, and as demand for these materials continues to increase, the energy requirement will as well. Offsetting this energy use will require increased focus on sustainable building materials. Further, the energy used in building, particularly in heating and air conditioning, accounts for 40 percent of a buildings energy use. Increasing the efficiency of building materials will reduce energy usage over the life time of the building. Current methods for maintaining the interior environment can be highly inefficient depending on the building materials selected. Materials such as concrete have low thermal efficiency and have a low heat capacity meaning it provides little insulation. Use of phase change materials (PCM) provides the opportunity to increase environmental efficiency of buildings by using the inherent latent heat storage as well as the increased heat capacity. Incorporating PCM into concrete via lightweight aggregates (LWA) by direct addition is seen as a viable option for increasing the thermal storage capabilities of concrete, thereby increasing building energy efficiency. As PCM change phase from solid to liquid, heat is absorbed from the surroundings, decreasing the demand on the air conditioning systems on a hot day or vice versa on a cold day. Further these materials provide an additional insulating capacity above the value of plain concrete. When the temperature drops outside the PCM turns back into a solid and releases the energy stored from the day. PCM is a hydrophobic material and causes reductions in compressive strength when incorporated directly into concrete, as shown in previous studies. A proposed method for mitigating this detrimental effect, while still incorporating PCM into concrete is to encapsulate the PCM in aggregate. This technique would, in theory, allow for the use of phase change materials directly in concrete, increasing the thermal efficiency of buildings, while negating the negative effect on compressive strength of the material.
ContributorsSharma, Breeann (Author) / Neithalath, Narayanan (Thesis advisor) / Mobasher, Barzin (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2013
161992-Thumbnail Image.png
Description
Composite materials have gained interest in the aerospace, mechanical and civil engineering industries due to their desirable properties - high specific strength and modulus, and superior resistance to fatigue. Design engineers greatly benefit from a reliable predictive tool that can calculate the deformations, strains, and stresses of composites under uniaxial

Composite materials have gained interest in the aerospace, mechanical and civil engineering industries due to their desirable properties - high specific strength and modulus, and superior resistance to fatigue. Design engineers greatly benefit from a reliable predictive tool that can calculate the deformations, strains, and stresses of composites under uniaxial and multiaxial states of loading including damage and failure predictions. Obtaining this information from (laboratory) experimental testing is costly, time consuming, and sometimes, impractical. On the other hand, numerical modeling of composite materials provides a tool (virtual testing) that can be used as a supplemental and an alternate procedure to obtain data that either cannot be readily obtained via experiments or is not possible with the currently available experimental setup. In this study, a unidirectional composite (Toray T800-F3900) is modeled at the constituent level using repeated unit cells (RUC) so as to obtain homogenized response all the way from the unloaded state up until failure (defined as complete loss of load carrying capacity). The RUC-based model is first calibrated and validated against the principal material direction laboratory tests involving unidirectional loading states. Subsequently, the models are subjected to multi-directional states of loading to generate a point cloud failure data under in-plane and out-of-plane biaxial loading conditions. Failure surfaces thus generated are plotted and compared against analytical failure theories. Results indicate that the developed process and framework can be used to generate a reliable failure prediction procedure that can possibly be used for a variety of composite systems.
ContributorsKatusele, Daniel Mutahwa (Author) / Rajan, Subramaniam (Thesis advisor) / Mobasher, Barzin (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2021
187384-Thumbnail Image.png
Description
Alkali activated mine tailing-slag blends and mine tailing-cement blends containing mine tailings as the major binder constituent are evaluated for their setting time behavior, reactivity properties, flow characteristics, and compressive strengths. Liquid sodium silicate and sodium hydroxide are used as the activator solution. The effects of varying alkali oxide-to-powder ratio

Alkali activated mine tailing-slag blends and mine tailing-cement blends containing mine tailings as the major binder constituent are evaluated for their setting time behavior, reactivity properties, flow characteristics, and compressive strengths. Liquid sodium silicate and sodium hydroxide are used as the activator solution. The effects of varying alkali oxide-to-powder ratio (n value) and silicon oxide-to-alkali oxide ratio (Ms value) is explored. The reactivity of all blends prepared in this study is studied using an isothermal calorimeter. Mine tailing-cement blends show a higher initial heat release peak than mine tailing-slag blends, whereas their cumulative heat release is comparable for higher n values of 0.050 to 0.100. Compressive strength tests and rheological studies were done for the refined blends selected based on setting time criterion. Setting times and compressive strengths are found to depend significantly on the activator parameters and binder compositions, allowing fine-tuning of the mix proportion parameters based on the intended end applications. The compressive strength of the selected mine tailing-slag blends and mine tailing-cement blends are in the range of 7-40 MPa and 4-11 MPa, respectively. Higher compressive strength is generally achieved at lower Ms and higher n values for mine tailing-slag blends, while a higher Ms yields better compressive strength in the case of mine tailing-cement blends. Rheological studies indicate a decrease in yield stress and viscosity with increase in the replacement ratio, while a higher activator concentration increase both. Oscillatory shear studies were used to evaluate the storage modulus and loss modulus of the mine tailing binders. The paste is seen to exhibit a more elastic behavior at n values of 0.05 and 0.075, however the viscous behavior is seen to dominate at higher n value of 0.1 at similar replacement ratios and Ms value. A higher Ms value is also seen to increase the onset point of the drop in both the storage and loss modulus of the pastes. The studied also investigated the potential use of mine tailing blends for coating applications. The pastes with higher alkalinity showed a lesser crack percentage, with a 10% slag replacement ratio having a better performance compared to 20% and 30% slag replacement ratios. Overall, the study showed that the activation parameters and mine tailings replacement level have a significant influence on the properties of both mine tailing-slag binders and mine tailing-cement binders, thereby allowing selection of suitable mix design for the desired end application, allowing a sustainable approach to dispose the mine tailings waste
ContributorsRamasamy Jeyaprakash, Rijul Kanth (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2023
187867-Thumbnail Image.png
Description
Concrete develops strength rapidly after mixing and is highly influenced by temperature and curing process. The material characteristics and the rate of property development, along with the exposure conditions influences volume change mechanisms in concrete, and the cracking propensity of the mixtures. Furthermore, the structure geometry (due to restraint as

Concrete develops strength rapidly after mixing and is highly influenced by temperature and curing process. The material characteristics and the rate of property development, along with the exposure conditions influences volume change mechanisms in concrete, and the cracking propensity of the mixtures. Furthermore, the structure geometry (due to restraint as well as the surface area-to-volume ratio) also influences shrinkage and cracking. Thus, goal of this research is to better understand and predict shrinkage cracking in concrete slab systems under different curing conditions. In this research, different concrete mixtures are evaluated on their propensity to shrink based on free shrinkage and restrained shrinkage tests.Furthermore, from the data obtained from restrained ring test, a casted slab is measured for shrinkage. Effects of different orientation of restraints are studied and compared to better understand the shrinking behavior of the concrete mixtures. The results show that the maximum shrinkage is near the edges of the slab and decreases towards the center. Shrinkage near the edges with no restraint is found out to be more than the shrinkage towards the edges with restraining effects.
ContributorsNimbalkar, Atharwa Samir (Author) / Neithalath, Narayanan (Thesis advisor) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam (Committee member) / Arizona State University (Publisher)
Created2023
156825-Thumbnail Image.png
Description
Being a remarkably versatile and inexpensive building material, concrete has found tremendous use in development of modern infrastructure and is the most widely used material in the world. Extensive research in the field of concrete has led to the development of a wide array of concretes with applications ranging from

Being a remarkably versatile and inexpensive building material, concrete has found tremendous use in development of modern infrastructure and is the most widely used material in the world. Extensive research in the field of concrete has led to the development of a wide array of concretes with applications ranging from building of skyscrapers to paving of highways. These varied applications require special cementitious composites which can satisfy the demand for enhanced functionalities such as high strength, high durability and improved thermal characteristics among others.

The current study focuses on the fundamental understanding of such functional composites, from their microstructural design to macro-scale application. More specifically, this study investigates three different categories of functional cementitious composites. First, it discusses the differences between cementitious systems containing interground and blended limestone with and without alumina. The interground systems are found to outperform the blended systems due to differential grinding of limestone. A novel approach to deduce the particle size distribution of limestone and cement in the interground systems is proposed. Secondly, the study delves into the realm of ultra-high performance concrete, a novel material which possesses extremely high compressive-, tensile- and flexural-strength and service life as compared to regular concrete. The study presents a novel first principles-based paradigm to design economical ultra-high performance concretes using locally available materials. In the final part, the study addresses the thermal benefits of a novel type of concrete containing phase change materials. A software package was designed to perform numerical simulations to analyze temperature profiles and thermal stresses in concrete structures containing PCMs.

The design of these materials is accompanied by material characterization of cementitious binders. This has been accomplished using techniques that involve measurement of heat evolution (isothermal calorimetry), determination and quantification of reaction products (thermo-gravimetric analysis, x-ray diffraction, micro-indentation, scanning electron microscopy, energy-dispersive x-ray spectroscopy) and evaluation of pore-size distribution (mercury intrusion porosimetry). In addition, macro-scale testing has been carried out to determine compression, flexure and durability response. Numerical simulations have been carried out to understand hydration of cementitious composites, determine optimum particle packing and determine the thermal performance of these composites.
ContributorsArora, Aashay (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Chawla, Nikhilesh (Committee member) / Hoover, Christian G (Committee member) / Arizona State University (Publisher)
Created2018
156798-Thumbnail Image.png
Description
Phase change materials (PCMs) are combined sensible-and-latent thermal energy storage materials that can be used to store and dissipate energy in the form of heat. PCMs incorporated into wall-element systems have been well-studied with respect to energy efficiency of building envelopes. New applications of PCMs in infrastructural concrete, e.g., for

Phase change materials (PCMs) are combined sensible-and-latent thermal energy storage materials that can be used to store and dissipate energy in the form of heat. PCMs incorporated into wall-element systems have been well-studied with respect to energy efficiency of building envelopes. New applications of PCMs in infrastructural concrete, e.g., for mitigating early-age cracking and freeze-and-thaw induced damage, have also been proposed. Hence, the focus of this dissertation is to develop a detailed understanding of the physic-chemical and thermo-mechanical characteristics of cementitious systems and novel coating systems for wall-elements containing PCM. The initial phase of this work assesses the influence of interface properties and inter-inclusion interactions between microencapsulated PCM, macroencapsulated PCM, and the cementitious matrix. The fact that these inclusions within the composites are by themselves heterogeneous, and contain multiple components necessitate careful application of models to predict the thermal properties. The next phase observes the influence of PCM inclusions on the fracture and fatigue behavior of PCM-cementitious composites. The compliant nature of the inclusion creates less variability in the fatigue life for these composites subjected to cyclic loading. The incorporation of small amounts of PCM is found to slightly improve the fracture properties compared to PCM free cementitious composites. Inelastic deformations at the crack-tip in the direction of crack opening are influenced by the microscale PCM inclusions. After initial laboratory characterization of the microstructure and evaluation of the thermo-mechanical performance of these systems, field scale applicability and performance were evaluated. Wireless temperature and strain sensors for smart monitoring were embedded within a conventional portland cement concrete pavement (PCCP) and a thermal control smart concrete pavement (TCSCP) containing PCM. The TCSCP exhibited enhanced thermal performance over multiple heating and cooling cycles. PCCP showed significant shrinkage behavior as a result of compressive strains in the reinforcement that were twice that of the TCSCP. For building applications, novel PCM-composites coatings were developed to improve and extend the thermal efficiency. These coatings demonstrated a delay in temperature by up to four hours and were found to be more cost-effective than traditional building insulating materials.

The results of this work prove the feasibility of PCMs as a temperature-regulating technology. Not only do PCMs reduce and control the temperature within cementitious systems without affecting the rate of early property development but they can also be used as an auto-adaptive technology capable of improving the thermal performance of building envelopes.
ContributorsAguayo, Matthew Joseph (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Underwood, Benjamin (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2018
Description
A comprehensive study was performed on non-proprietary ultra-high-performance concrete (UHPC) material and several design methods were suggested based on numerous experimental results. Several sets of compression tests, direct tensile tests, and flexural tests were performed on UHPC to provide a better understanding of the mechanisms involved in the mechanical behavior

A comprehensive study was performed on non-proprietary ultra-high-performance concrete (UHPC) material and several design methods were suggested based on numerous experimental results. Several sets of compression tests, direct tensile tests, and flexural tests were performed on UHPC to provide a better understanding of the mechanisms involved in the mechanical behavior of the fiber reinforced material. In addition to compressive tests, flexural tests, based on ASTM C1609 and EN 14651, were performed. The effect of the strain rate on the UHPC material was also investigated through the high-speed tensile tests at different strain rates. Alongside the usual measurement tools such as linear variable differential transformers (LVDT) and clip gages, digital image correlation (DIC) method was also used to capture the full-range deformations in the samples and localized crack propagations. Analytical approaches were suggested, based on the experimental results of the current research and other research groups, to provide design solutions for different applications and design approaches for UHPC and hybrid reinforced concrete (HRC) sections. The suggested methods can be used both in the ultimate limit state (ULS) and the serviceability limit state (SLS) design methods. Closed form relationships, based on the non-linear design of reinforced concrete, were used in the calculation of the load-deflection response of UHPC. The procedures were used in obtaining material properties from the flexural data using procedures that are based on back-calculation of material properties from the experimental results. Model simulations were compared with other results available in the literature. Performance of flexural reinforced UHPC concrete beam sections tested under different types of loading was addressed using a combination of fibers and rebars. The same analytical approach was suggested for the fiber reinforced concrete (FRC) sections strengthened (rehabilitated) by fiber reinforced polymers (FRP) and textile reinforced concrete (TRC). The objective is to validate the proper design procedures for flexural members as well as connection elements. The proposed solutions can be used to reduce total reinforcement by means of increasing the ductility of the FRC, HRC, and UHPC members in order to meet the required flexural reinforcement, which in some cases leads to total elimination of rebars.
ContributorsKianmofrad, Farrokh (Author) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam Dharma (Committee member) / Hoover, Christian G. (Committee member) / Arizona State University (Publisher)
Created2018
Description
With the growth of global population, the demand for sustainable infrastructure is significantly increasing. Substructures with appropriate materials are required to be built in or above soil that can support the massive volume of construction demand. However, increased structural requirements often require ground improvement to increase the soil capacity. Moreover,

With the growth of global population, the demand for sustainable infrastructure is significantly increasing. Substructures with appropriate materials are required to be built in or above soil that can support the massive volume of construction demand. However, increased structural requirements often require ground improvement to increase the soil capacity. Moreover, certain soils are prone to liquefaction during an earthquake, which results in significant structural damage and loss of lives. While various soil treatment methods have been developed in the past to improve the soil’s load carrying ability, most of these traditional treatment methods have been found either hazardous and may cause irreversible damage to natural environment, or too disruptive to use beneath or adjacent to existing structures. Thus, alternative techniques are required to provide a more natural and sustainable solution. Biomediated methods of strengthening soil through mineral precipitation, in particular through microbially induced carbonate precipitation (MICP), have recently emerged as a promising means of soil improvement. In MICP, the precipitation of carbonate (usually in the form of calcium carbonate) is mediated by microorganisms and the process is referred to as biomineralization. The precipitated carbonate coats soil particles, precipitates in the voids, and bridges between soil particles, thereby improving the mechanical properties (e.g., strength, stiffness, and dilatancy). Although it has been reported that the soil’s mechanical properties can be extensively enhanced through MICP, the micro-scale mechanisms that influence the macro-scale constitutive response remain to be clearly explained.

The utilization of alternative techniques such as MICP requires an in-depth understanding of the particle-scale contact mechanisms and the ability to predict the improvement in soil properties resulting from calcite precipitation. For this purpose, the discrete element method (DEM), which is extensively used to investigate granular materials, is adopted in this dissertation. Three-dimensional discrete element method (DEM) based numerical models are developed to simulate the response of bio-cemented sand under static and dynamic loading conditions and the micro-scale mechanisms of MICP are numerically investigated. Special focus is paid to the understanding of the particle scale mechanisms that are dominant in the common laboratory scale experiments including undrained and drained triaxial compression when calcite bridges are present in the soil, that enhances its load capacity. The mechanisms behind improvement of liquefaction resistance in cemented sands are also elucidated through the use of DEM. The thesis thus aims to provide the fundamental link that is important in ensuring proper material design for granular materials to enhance their mechanical performance.
ContributorsYang, Pu (Author) / Neithalath, Narayanan (Thesis advisor) / Kavazanjian, Edward (Committee member) / Rajan, S.D. (Committee member) / Mobasher, Barzin (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2018