Matching Items (18)
Filtering by

Clear all filters

Description
In the Spring 2013 and Fall 2013 semesters, a survey was taken of students enrolled in the principal undergraduate civil engineering structures course, CEE 321: Structural Analysis and Design, to assess both the prevalence of technology in the lives of the students and the potential ways this information could be

In the Spring 2013 and Fall 2013 semesters, a survey was taken of students enrolled in the principal undergraduate civil engineering structures course, CEE 321: Structural Analysis and Design, to assess both the prevalence of technology in the lives of the students and the potential ways this information could be use to improve the educational experience. The results of this survey indicated that there was a considerable demand for additional online resources outside of the formal classroom. The students of CEE 321 requested online lecture videos in particular, and so a project was launched at the start of the Spring 2014 semester to deliver a large body of academic instructional videos. In total, a collection of 30 instructional videos which covered all key topics covered over a semester of CEE 321 was published. The driving interest behind this creative project is to increase the level of understanding, comfort, and performance in students enrolled in the class. Although the quantity of initial student feedback is relatively small, the reactions are distinctly positive and reflect an improvement in understanding amongst the responding students. Over the course of upcoming semesters, qualitative and quantitative assessments of the impact of the videos are expected to provide a better indication of their quality and effectiveness in supporting student comprehension and performance in CEE 321. Above all, the success of these videos is directly tied to their ability to function as living, adaptable resources which are continuously molded and improved by student feedback.
ContributorsReasor, Drew Donn (Author) / Rajan, Subramaniam (Thesis director) / Hjelmstad, Keith (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2014-05
132288-Thumbnail Image.png
Description
The preceding paper analyzes the effects of UV radiation in plastic reinforcement and its effects on the fracture properties of cement-based materials. Three point tests were performed on notched beams, which called for the consideration of the Type II Size Effect. A comparison of the ductility of beams with and

The preceding paper analyzes the effects of UV radiation in plastic reinforcement and its effects on the fracture properties of cement-based materials. Three point tests were performed on notched beams, which called for the consideration of the Type II Size Effect. A comparison of the ductility of beams with and without polyethylene plastic powder reinforcement was done through the calculation of the fracture parameters Gf and cf, which represent the initial fracture energy and the characteristic length respectively. Although there was an observed increase in ductile behavior and properties in beams with polyethylene reinforcement, there did not seem to be a significant effect caused by the UV radiation. The hydrophilicity of the polyethylene powder was successfully increased through UV radiation and validated through water retention tests, which showed that the UV-treated polyethylene was retaining more water than the non-treated polyethylene, yet there was no extra increase in ductility of the cement beams compared to using non-treated polyethylene. The Type II Size Effect analysis was performed and compared to the stress analysis results of the experiment. For future research, it is recommended that a higher volume of polyethylene per 1000 grams of cement powder be used, as well as increasing the strength of the UV chamber to achieve a larger increase in the hydrophilicity of the polyethylene. Also, perhaps using more precise equipment to cut the notches in the beams would be helpful in ensuring that all specimens are identical and there is no error in notch depth caused by inaccurate use of the hacksaw or radial saw. Further experiments will be conducted.
ContributorsMardambek, Karim (Author) / Hoover, Christian (Thesis director) / Kazembeyki, Maryam (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
This honors project combines the capstone component of CEE: 486 Integrated Civil Engineering Design and the Barrett, The Honors College requirement by combination of Due Diligence report and Street Improvements and Quantities, respectively.

Overall, this project report provides due diligence for a proposed development project, Bella Vida Estates, designed by

This honors project combines the capstone component of CEE: 486 Integrated Civil Engineering Design and the Barrett, The Honors College requirement by combination of Due Diligence report and Street Improvements and Quantities, respectively.

Overall, this project report provides due diligence for a proposed development project, Bella Vida Estates, designed by Red Rock Engineering. This proposed project is located in the southwest portion of the City of Phoenix, in the Laveen Village community.

Bella Vida Estates is a proposed 560-acre mixed-use development whose composition includes single family residential, commercial, recreational park and greenspace, a preparatory charter school, and water storage and wastewater treatment facilities. The subject property is confined east of the new Loop 202 – South Mountain Freeway Extension, south of W. Dobbins Road, north of W. Elliot Road, and west of S. 51st Avenue.

The Due Diligence report is comprised of relevant information needed to develop these parcels of land, including a Property Overview, Land Development Plan, Development Considerations, Sustainability and Value Add components, and Costs.

To provide a more comprehensive due diligence package for the proposed project, street improvement quantities were estimated and then presented via a Construction Documents Exhibit and an Opinion of Probable Costs document.

The Construction Documents Exhibit was created according to City of Phoenix Standards using AutoCAD Civil 3D. The exhibit includes four sheets: Cover Sheet, Exhibit Sheet, Cross Sections, and Appendix. The purpose of this exhibit is to provide a visual representation of the streets to be improved upon, with proper hatching (based on type of cross section), dimensioning, and annotations to aid in presentation.

The Opinion of Probable Costs tabulates Onsite Development costs, which includes Paving, utilities in the form of Water, Sewer, and Storm, Earthwork/Grading, and Lump Sum costs. In addition to the onsite costs, Contingency, General Conditions, General Contractor Fee, and Taxes are included to provide a comprehensive overview of estimated costs.

Red Rock Engineering is excited to propose this promising, sustainable development as a place of residence, commerce, and recreation to the residents of the Laveen Village community.
ContributorsGrgantov, William (Author) / Fox, Peter (Thesis director) / Farrell, Trey (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131519-Thumbnail Image.png
Description
As a student and then an Undergraduate Teaching Assistant (UGTA), I have had the opportunity to personally witness the learning process of both myself and approximately 75 additional incoming Civil Engineering students taking the Mechanics courses after me. While watching the student learning process as an UGTA, I realized that

As a student and then an Undergraduate Teaching Assistant (UGTA), I have had the opportunity to personally witness the learning process of both myself and approximately 75 additional incoming Civil Engineering students taking the Mechanics courses after me. While watching the student learning process as an UGTA, I realized that there were consistent points of confusion amongst the students that the teaching staff could not efficiently communicate with the electronic or physical classroom materials available. As a physical learner, I am able to learn more comprehensively if I have a physical model to manipulate, and often found myself in the position of wanting to be able to physically represent and manipulate the systems being studied in class.
ContributorsCamillucci, Allyson Nicole (Co-author, Co-author) / Hjelmstad, Keith (Thesis director) / Chatziefstratiou, Efthalia (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131665-Thumbnail Image.png
Description
Gathering the necessary information required to tackle traffic congestion problems is generally time consuming and challenging but is an important part of city planners’ work. The purpose of this paper is to describe the methodology used when analyzing potential solutions for the Arizona State Route 89A and Highway 179 roundabout

Gathering the necessary information required to tackle traffic congestion problems is generally time consuming and challenging but is an important part of city planners’ work. The purpose of this paper is to describe the methodology used when analyzing potential solutions for the Arizona State Route 89A and Highway 179 roundabout in Sedona, Arizona; which is currently experiencing significant congestion. The oversaturated condition is typically applied to signalized intersections but its application to roundabouts requires further exploration for future management of similar transportation systems. The accompanying Quick Estimation and Simulation model (QESM) spreadsheet was calibrated using an iterative process to optimize its level of adaptability to various scenarios. This microsimulation modeling program can be used to predict the outcome of possible roadway improvements aimed at decreasing traffic congestion. The information provided in this paper helps users understand traffic system problems, as a primary to visual simulation programs.
ContributorsBrunetti, Isabel (Co-author) / Tran, Adam (Co-author) / Zhou, Xuesong (Thesis director) / Carreon, Adam (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132915-Thumbnail Image.png
Description
With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine

With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine the option that shows the higher rate of sustainability. In regards to the growth phase, which includes water usage, land usage, growth time, bamboo and wood showed similar characteristics overall, with wood scoring 1.11% higher than bamboo. Manufacturing, which captures the extraction and milling processes, is experiencing use of wood at levels four times those of bamboo, as bamboo production has not reached the efficiency of wood within the United States. Structural use proved to display bamboo’s power, as it scored 30% higher than wood. Overall, bamboo received a score 15% greater than that of wood, identifying this fast growing plant as the comparatively more sustainable construction material.
ContributorsThies, Jett Martin (Author) / Ward, Kristen (Thesis director) / Halden, Rolf (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133978-Thumbnail Image.png
Description
Arizona's transportation infrastructure is in need of an update. The American Society of Civil Engineers (ASCE) State Infrastructure 2017 Report Card scores Arizona's roads at a D+ and Arizona's bridges at a B. These grades are indicative that the serviceability levels of the roads and bridges are less than adequate.

Arizona's transportation infrastructure is in need of an update. The American Society of Civil Engineers (ASCE) State Infrastructure 2017 Report Card scores Arizona's roads at a D+ and Arizona's bridges at a B. These grades are indicative that the serviceability levels of the roads and bridges are less than adequate. These grades may seem tolerable in light of a national bridge C+ grade and a national road D grade, but the real problem lies in Arizona's existing funding gap that is in danger of exponentially increasing in the future. With an influx of vehicles on Arizona's roads and bridges, the cost of building, repairing, and maintaining them will grow and cause a problematic funding shortage. This report explores the current state of Arizona's roads and bridges as well as the policy and funding sources behind them, using statistics from the ASCE infrastructure report card and the Federal Highway Administration. Additionally, it discusses how regular, preventative maintenance for transportation infrastructure is the economically responsible choice for the state because it decreases delays and fuel expenses, prevents possible catastrophes, and increases human safety. To prioritize preventative transportation infrastructure maintenance, the common mentality that allows it to be sidelined for more newsworthy projects needs to be changed. Along with gaining preventative maintenance revenues through increasing vehicular taxes and fees, encouraging transportation policymakers and politicians to make economic decisions in favor of maintenance rather than waiting until failure is a reliable way to encourage regular, preventative maintenance.
ContributorsBurdett, Courtney (Author) / Hjelmstad, Keith (Thesis director) / Pendyala, Ram (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134402-Thumbnail Image.png
Description
The School of Sustainable Engineering and the Built Environment (SSEBE) used to have a shake table where FSE 100 professors would use students' model structures to demonstrate how failure occurs during an earthquake. The SSEBE has wanted to build a shake table ever since the original table was no longer

The School of Sustainable Engineering and the Built Environment (SSEBE) used to have a shake table where FSE 100 professors would use students' model structures to demonstrate how failure occurs during an earthquake. The SSEBE has wanted to build a shake table ever since the original table was no longer available to them. My creative project is to design and build a shake table for FSE 100 use. This paper will go through the steps I took to design and construct my shake table as well as suggestions to anyone else who would want to build a shake table. The design of the shake table that was constructed was modeled after Quanser's Shake Table II. The pieces from the shake table were purchased from McMaster-Carr and was assembled at the TechShop in Chandler, Arizona. An educational component was added to this project to go along with the shake table. The project will be for the use of a FSE 100 classes. This project is very similar to the American Society of Civil Engineers, Pacific Southwest Conference's seismic competition. The main difference is that FSE 100 students will not be making a thirty story model but only a five story model. This shake table will make Arizona State University's engineering program competitive with other top universities that use and implement shake table analysis in their civil engineering courses.
ContributorsLockhart, Laura E. (Author) / Ward, Kristen (Thesis director) / Hjelmstad, Keith (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133958-Thumbnail Image.png
Description
The 8.1 magnitude earthquake that struck Mexico City in 1985 left 10,000 people dead, and over 400 buildings collapsed. The extent of the damage left behind by this powerful quake has been extensively studied to make improvements to engineering and architectural practices in earthquake-prone areas of the world. Thirty-two years

The 8.1 magnitude earthquake that struck Mexico City in 1985 left 10,000 people dead, and over 400 buildings collapsed. The extent of the damage left behind by this powerful quake has been extensively studied to make improvements to engineering and architectural practices in earthquake-prone areas of the world. Thirty-two years later, on the exact anniversary of the devastating earthquake, Mexico City was once again jolted by a 7.1 magnitude earthquake. Although still significant, the 2017 earthquake collapsed only about a tenth of the buildings collapsed by the 1985 Earthquake, and in turn resulted in a lower death toll. Even though these earthquakes struck in the same seismic region, their effects were vastly different. This thesis completes a comparison between the two earthquakes focusing on the structural impacts including background on Mexico City's unique geology, basic concepts necessary to understand the response of structures to earthquake excitation, and structural failure modes observed in both earthquakes. The thesis will also discuss the earthquake's fundamental differences that led to the discrepancy in structural damage and ultimately in lower death tolls. Of those discussed, is the types of buildings that were targeted and collapsed. In 1985, buildings with 6 or more floors had the highest damage category. Resonance frequencies of these buildings were similar to the resonance frequencies of the subsoil, leading to amplified oscillations, and ultimately in failure. The 2017 earthquake did not have as much distance from the epicenter for the high frequency seismic waves to be absorbed. In contrast, the shorter, faster waves that reached the capital affected smaller buildings, and spared most tall buildings.
ContributorsGonzalez, Diana Laura (Author) / Hjelmstad, Keith (Thesis director) / Ward, Kristen (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
161583-Thumbnail Image.png
Description
In the structural engineering industry, the design of structures typically follows a prescriptive approach in which engineers conform to a series of code requirements that stipulate the design process. Prescriptive design is tested, reliable, and understood by practically every structural engineer in the industry; however, in recent history a new

In the structural engineering industry, the design of structures typically follows a prescriptive approach in which engineers conform to a series of code requirements that stipulate the design process. Prescriptive design is tested, reliable, and understood by practically every structural engineer in the industry; however, in recent history a new method of design has started to gain traction among certain groups of engineers. Performance-based design is a reversal of the prescriptive approach in that it allows engineers to set performance goals and work to prove that their proposed designs meet the criteria they have established. To many, it is an opportunity for growth in the structural design industry. Currently, performance-based design is most commonly utilized in regions where seismic activity plays an important role in the design process. Due to its flexible nature, performance-based design has proven extremely useful when applied to unique structures such as high-rises, stadiums, and other community-centric designs. With a focus placed on performance objectives and not on current code prescriptions, engineers utilizing performance-based design are more adept to implement new materials, design processes, and construction methods, and can more efficiently design their structures to exist on a specific area of land. Despite these many cited benefits, performance-based design is still considered an uncommon practice in the broad view of structural design. In order to ensure that structural engineers have the proper tools to practice performance-based design in instances where they see fit, a coordinated effort will be required of the engineers themselves, the firms of which they are employed, the professional societies to which they belong, and the educators who are preparing their next generation. Performance-based design holds with it the opportunity to elevate the role of the structural engineer to which they are informed members of the community, where the structures they create not only perform according to design prescriptions, but also perform according to the needs of the owners, engineers, and society.
ContributorsMaurer, Cole (Author) / Hjelmstad, Keith (Thesis advisor) / Chatziefstratiou, Efthalia (Committee member) / Dusenberry, Donald (Committee member) / Arizona State University (Publisher)
Created2021