Matching Items (2)
Filtering by

Clear all filters

149708-Thumbnail Image.png
Description
Semiconductor manufacturing facilities are very complex and capital intensive in nature. During the lifecycle of these facilities various disciplines come together, generate and use a tremendous amount of building and process information to support various decisions that enable them to successfully design, build and sustain these advanced facilities. However, a

Semiconductor manufacturing facilities are very complex and capital intensive in nature. During the lifecycle of these facilities various disciplines come together, generate and use a tremendous amount of building and process information to support various decisions that enable them to successfully design, build and sustain these advanced facilities. However, a majority of the information generated and processes taking place are neither integrated nor interoperable and result in a high degree of redundancy. The objective of this thesis is to build an interoperable Building Information Model (BIM) for the Base-Build and Tool Installation in a semiconductor manufacturing facility. It examines existing processes and data exchange standards available to facilitate the implementation of BIM and provides a framework for the development of processes and standards that can help in building an intelligent information model for a semiconductor manufacturing facility. To understand the nature of the flow of information between the various stakeholders the flow of information between the facility designer, process tool manufacturer and tool layout designer is examined. An information model for the base build and process tool is built and the industry standards SEMI E6 and SEMI E51 are used as a basis to model the information. It is found that applications used to create information models support interoperable industry standard formats such as the Industry Foundation Classes (IFC) and ISO 15926 in a limited manner. A gap analysis has revealed that interoperability standards applicable to the semiconductor manufacturing industry such as the IFC and ISO15926 need to be expanded to support information transfers unique to the industry. Information modeling for a semiconductor manufacturing facility is unique in that it is a process model (Process Tool Information Model) within a building model (Building Information Model), each of them supported more robustly by different interoperability standards. Applications support interoperability data standards specific to the domain or industry they serve but information transfers need to occur between the various domains. To facilitate flow of information between the different domains it is recommended that a mapping of the industry standards be undertaken and translators between them be developed for business use.
ContributorsPindukuri, Shruthi (Author) / Chasey, Allan D (Thesis advisor) / Wiezel, Avi (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2011
Description
Horizontal Directional Drilling (HDD) is a growing and expanding trenchless method utilized to install pipelines from 2 to 60 inch diameters for lengths over 10,000 foot. To date, there are not many public documents where direct costs and bid prices incurred by HDD installations are available and analyzed. The objective

Horizontal Directional Drilling (HDD) is a growing and expanding trenchless method utilized to install pipelines from 2 to 60 inch diameters for lengths over 10,000 foot. To date, there are not many public documents where direct costs and bid prices incurred by HDD installations are available and analyzed. The objective is to provide a better understanding of the factors affecting the bid prices of these projects. The first section of the thesis analyzes how project parameters such as product diameter, bore length and soil conditions affect the bid price of water and wastewater pipeline installations using HDD. Through multiple linear regressions, the effect of project parameters on bid prices of small, medium and large rigs projects is extracted. The results were further investigated to gain a better understanding of bid factors that influence the relationship between total cost and the project parameters. The second section uses unit cost, based on bid prices, to compare the costs incurred by defined categories. Parameters such as community type, product type, soil conditions, and geographical region were used in the analysis. Furthermore, using average unit cost from 2001 to 2009, HDD project cost trends are briefly analyzed against the main variations of the US economy from the same time horizon by using economic indicators. It was determined that project geometric factors influence more the bid price of small rig projects than large rig projects because external factors including market rates and economic situation have an increasing impact on bid prices when rig size increases. It was observed that bid price variation of HDD projects over years followed the same trend as the US economic variation described by economic indicators.
ContributorsVilfrant, Emmania Claudyne (Author) / Ariaratnam, Samuel T (Thesis advisor) / Lueke, Jason S (Committee member) / Chasey, Allan D (Committee member) / Arizona State University (Publisher)
Created2010