Matching Items (309)
Filtering by

Clear all filters

151676-Thumbnail Image.png
Description
Laboratory assessment of crack resistance and propagation in asphalt concrete is a difficult task that challenges researchers and engineers. Several fracture mechanics based laboratory tests currently exist; however, these tests and subsequent analysis methods rely on elastic behavior assumptions and do not consider the time-dependent nature of asphalt concrete. The

Laboratory assessment of crack resistance and propagation in asphalt concrete is a difficult task that challenges researchers and engineers. Several fracture mechanics based laboratory tests currently exist; however, these tests and subsequent analysis methods rely on elastic behavior assumptions and do not consider the time-dependent nature of asphalt concrete. The C* Line Integral test has shown promise to capture crack resistance and propagation within asphalt concrete. In addition, the fracture mechanics based C* parameter considers the time-dependent creep behavior of the materials. However, previous research was limited and lacked standardized test procedure and detailed data analysis methods were not fully presented. This dissertation describes the development and refinement of the C* Fracture Test (CFT) based on concepts of the C* line integral test. The CFT is a promising test to assess crack propagation and fracture resistance especially in modified mixtures. A detailed CFT test protocol was developed based on a laboratory study of different specimen sizes and test conditions. CFT numerical simulations agreed with laboratory results and indicated that the maximum horizontal tensile stress (Mode I) occurs at the crack tip but diminishes at longer crack lengths when shear stress (Mode II) becomes present. Using CFT test results and the principles of time-temperature superposition, a crack growth rate master curve was successfully developed to describe crack growth over a range of test temperatures. This master curve can be applied to pavement design and analysis to describe crack propagation as a function of traffic conditions and pavement temperatures. Several plant mixtures were subjected to the CFT and results showed differences in resistance to crack propagation, especially when comparing an asphalt rubber mixture to a conventional one. Results indicated that crack propagation is ideally captured within a given range of dynamic modulus values. Crack growth rates and C* prediction models were successfully developed for all unmodified mixtures in the CFT database. These models can be used to predict creep crack propagation and the C* parameter when laboratory testing is not feasible. Finally, a conceptual approach to incorporate crack growth rate and the C* parameter into pavement design and analysis was presented.
ContributorsStempihar, Jeffrey (Author) / Kaloush, Kamil (Thesis advisor) / Witczak, Matthew (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2013
152399-Thumbnail Image.png
Description
The purpose of this research was to introduce unsaturated soil mechanics to the undergraduate geotechnical engineering course in a concise and easy to understand manner. Also, it was essential to develop unsaturated soil mechanics teaching material that merges smoothly into current undergraduate curriculum and with sufficient flexibility for broad adaptation

The purpose of this research was to introduce unsaturated soil mechanics to the undergraduate geotechnical engineering course in a concise and easy to understand manner. Also, it was essential to develop unsaturated soil mechanics teaching material that merges smoothly into current undergraduate curriculum and with sufficient flexibility for broad adaptation by faculty. The learning material consists of three lecture modules and a laboratory module. The lecture modules introduced soil mechanics for the general 3-phase medium condition with the saturated soil as a special case. The three lecture modules that were developed are (1) the stress state variables for unsaturated soils, (2) soil-water characteristic curves, and (3) axis translation. A PowerPoint presentation was created to present each module in an easy to understand manner so that the students will enjoy the learning material. Along with the lecture modules, a laboratory module was developed that reinforced the key aspects and concepts for unsaturated soil behavior. A laboratory manual was created for the Tempe Pressure Cell and Fredlund SWC-150 device (one-dimensional oedometer pressure plate device) in order to give the instructor and institution a choice of which testing equipment best fits their program. Along with the laboratory manuals, an analysis guide was created to help students with constructing SWCCs from their laboratory. A soil type recommendation was also researched for use in the laboratory module. The soil ensured acceptably short equilibrium times along with a wide range or suction values controllable by both testing equipment (Tempe Pressure Cell and Fredlund SWC-150). A silt type soil material was recommended for the laboratory module. As a part of this research, a smooth transition from unsaturated to saturated condition was demonstrated through laboratory volume change experiments using a silt soil tested in an oedometer-type pressure plate device. Three different experiments were conducted: (1) volume change for unsaturated soils in response to suction and net normal stress change, (2) volume change for saturated soils in response to effective stress change, as determined using unsaturated soils testing equipment, and (3) traditional consolidation tests on saturated soil using a conventional consolidometer device.
ContributorsRamirez, Eddy F (Author) / Houston, Sandra (Thesis advisor) / Zapata, Claudia (Thesis advisor) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2013
151367-Thumbnail Image.png
Description
This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations (MCS) and implementation of probabilistic analysis in engineering designs through Reliability Based Design Optimization (RBDO). First, the emphasis is on

This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations (MCS) and implementation of probabilistic analysis in engineering designs through Reliability Based Design Optimization (RBDO). First, the emphasis is on experimental data analysis focusing on probabilistic distribution models which characterize the randomness associated with the experimental data. The material properties of Kevlar® 49 are modeled using experimental data analysis and implemented along with an existing spiral modeling scheme (SMS) and user defined constitutive model (UMAT) for fabric based engine containment simulations in LS-DYNA. MCS of the model are performed to observe the failure pattern and exit velocities of the models. Then the solutions are compared with NASA experimental tests and deterministic results. MCS with probabilistic material data give a good prospective on results rather than a single deterministic simulation results. The next part of research is to implement the probabilistic material properties in engineering designs. The main aim of structural design is to obtain optimal solutions. In any case, in a deterministic optimization problem even though the structures are cost effective, it becomes highly unreliable if the uncertainty that may be associated with the system (material properties, loading etc.) is not represented or considered in the solution process. Reliable and optimal solution can be obtained by performing reliability optimization along with the deterministic optimization, which is RBDO. In RBDO problem formulation, in addition to structural performance constraints, reliability constraints are also considered. This part of research starts with introduction to reliability analysis such as first order reliability analysis, second order reliability analysis followed by simulation technique that are performed to obtain probability of failure and reliability of structures. Next, decoupled RBDO procedure is proposed with a new reliability analysis formulation with sensitivity analysis, which is performed to remove the highly reliable constraints in the RBDO, thereby reducing the computational time and function evaluations. Followed by implementation of the reliability analysis concepts and RBDO in finite element 2D truss problems and a planar beam problem are presented and discussed.
ContributorsDeivanayagam, Arumugam (Author) / Rajan, Subramaniam D. (Thesis advisor) / Mobasher, Barzin (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2012
151362-Thumbnail Image.png
Description
Urban water systems face sustainability challenges ranging from water quality, leaks, over-use, energy consumption, and long-term supply concerns. Resiliency challenges include the capacity to respond to drought, managing pipe deterioration, responding to natural disasters, and preventing terrorism. One strategy to enhance sustainability and resiliency is the development and adoption of

Urban water systems face sustainability challenges ranging from water quality, leaks, over-use, energy consumption, and long-term supply concerns. Resiliency challenges include the capacity to respond to drought, managing pipe deterioration, responding to natural disasters, and preventing terrorism. One strategy to enhance sustainability and resiliency is the development and adoption of smart water grids. A smart water grid incorporates networked monitoring and control devices into its structure, which provides diverse, real-time information about the system, as well as enhanced control. Data provide input for modeling and analysis, which informs control decisions, allowing for improvement in sustainability and resiliency. While smart water grids hold much potential, there are also potential tradeoffs and adoption challenges. More publicly available cost-benefit analyses are needed, as well as system-level research and application, rather than the current focus on individual technologies. This thesis seeks to fill one of these gaps by analyzing the cost and environmental benefits of smart irrigation controllers. Smart irrigation controllers can save water by adapting watering schedules to climate and soil conditions. The potential benefit of smart irrigation controllers is particularly high in southwestern U.S. states, where the arid climate makes water scarcer and increases watering needs of landscapes. To inform the technology development process, a design for environment (DfE) method was developed, which overlays economic and environmental performance parameters under different operating conditions. This method is applied to characterize design goals for controller price and water savings that smart irrigation controllers must meet to yield life cycle carbon dioxide reductions and economic savings in southwestern U.S. states, accounting for regional variability in electricity and water prices and carbon overhead. Results from applying the model to smart irrigation controllers in the Southwest suggest that some areas are significantly easier to design for.
ContributorsMutchek, Michele (Author) / Allenby, Braden (Thesis advisor) / Williams, Eric (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2012
150799-Thumbnail Image.png
Description
Public-Private Partnerships (P3) in North America have become a trend in the past two decades and are gaining attention in the transportation industry with some large scale projects being delivered by this approach. This is due to the need for alternative funding sources for public projects and for improved efficiency

Public-Private Partnerships (P3) in North America have become a trend in the past two decades and are gaining attention in the transportation industry with some large scale projects being delivered by this approach. This is due to the need for alternative funding sources for public projects and for improved efficiency of these projects in order to save time and money. Several research studies have been done, including mature markets in Europe and Australia, on the cost and schedule performance of transportation projects but no similar study has been conducted in North America. This study focuses on cost and schedule performance of twelve P3 transportation projects during their construction phase, costing over $100 million each, consisting of roads and bridges only with no signature tunnels. The P3 approach applied in this study is the Design-Build-Finance-Operate-Maintain (DBFOM) model and the results obtained are compared with similar research studies on North American Design-Build (DB) and Design-Bid-Build (DBB) projects. The schedule performance for P3 projects in this study was found to be -0.23 percent versus estimated as compared to the 4.34 percent for the DBB projects and 11.04 percent for the DB projects in the Shrestha study, indicating P3 projects are completed in less time than other methods. The cost performance in this study was 0.81 percent for the P3 projects while in the Shrestha study the average cost increase for the four DB projects was found to be 1.49 percent while for the DBB projects it was 12.71 percent, again indicating P3 projects reduce cost compared to other delivery approaches. The limited number of projects available for this study does not allow us to draw an explicit conclusion on the performance of P3s in North America but paves the way for future studies to explore more data as it becomes available. However, the results in this study show that P3 projects have good cost and schedule adherence to the contract requirements. This study gives us an initial comparison of P3 performance with the more traditional approach and shows us the empirical benefits and limitations of the P3 approach in the highway construction industry.
ContributorsBansal, Ankita (Author) / Chasey, Allan (Thesis advisor) / Gibson, Edd (Committee member) / Pendyala, Ram (Committee member) / Arizona State University (Publisher)
Created2012
150955-Thumbnail Image.png
Description
Front end planning (FEP) is an essential and valuable process that helps identify risks early in the capital project planning phases. With effective FEP, risks can potentially be mitigated through development of detailed scope definition and subsequent efficient project resource use. The thesis describes the FEP process that has been

Front end planning (FEP) is an essential and valuable process that helps identify risks early in the capital project planning phases. With effective FEP, risks can potentially be mitigated through development of detailed scope definition and subsequent efficient project resource use. The thesis describes the FEP process that has been developed over the past twenty years by the Construction Industry Institute (CII). Specifically, it details the FEP tools developed for early project planning and the data gathered to analyze the tools used within the CII community. Data from a March 2011 survey are given showing the tools commonly used, how those tools are used and the common barriers faced that prohibit successful FEP implementation. The findings from in-depth interviews are also shared in the thesis. The interviews were used to gather detail responses from organizations on the implementation of their FEP processes. In total, out of the 116 CII organizations, 59 completed the survey and over 75 percent of the respondents used at least one CII tool in their front end planning processes. Of the 59 survey respondents, 12 organizations participated in the in-depth interviews. The thesis concludes that CII organizations continue to find value in CII FEP tools due to the increase tool usage. Also the thesis concludes that organizations must have strong management commitment, smart succession planning and a standardized planning process to increase the likelihood of successful FEP strategies.
ContributorsBosfield, Roberta Patrice (Author) / Gibson, G.Edward (Thesis advisor) / Wiezel, Avi (Committee member) / Ernzen, James (Committee member) / Arizona State University (Publisher)
Created2012
150567-Thumbnail Image.png
Description
Nowadays there is a pronounced interest in the need for sustainable and reliable infrastructure systems to address the challenges of the future infrastructure development. This dissertation presents the research associated with understanding various sustainable and reliable design alternatives for water distribution systems. Although design of water distribution networks (WDN) is

Nowadays there is a pronounced interest in the need for sustainable and reliable infrastructure systems to address the challenges of the future infrastructure development. This dissertation presents the research associated with understanding various sustainable and reliable design alternatives for water distribution systems. Although design of water distribution networks (WDN) is a thoroughly studied area, most researchers seem to focus on developing algorithms to solve the non-linear hard kind of optimization problems associated with WDN design. Cost has been the objective in most of the previous studies with few models considering reliability as a constraint, and even fewer models accounting for the environmental impact of WDN. The research presented in this dissertation combines all these important objectives into a multi-objective optimization framework. The model used in this research is an integration of a genetic algorithm optimization tool with a water network solver, EPANET. The objectives considered for the optimization are Life Cycle Costs (LCC) and Life Cycle Carbon Dioxide (CO2) Emissions (LCE) whereby the system reliability is made a constraint. Three popularly used resilience metrics were investigated in this research for their efficiency in aiding the design of WDNs that are able to handle external natural and man-made shocks. The best performing resilience metric is incorporated into the optimization model as an additional objective. Various scenarios were developed for the design analysis in order to understand the trade-offs between different critical parameters considered in this research. An approach is proposed and illustrated to identify the most sustainable and resilient design alternatives from the solution set obtained by the model employed in this research. The model is demonstrated by using various benchmark networks that were studied previously. The size of the networks ranges from a simple 8-pipe system to a relatively large 2467-pipe one. The results from this research indicate that LCE can be reduced at a reasonable cost when a better design is chosen. Similarly, resilience could also be improved at an additional cost. The model used in this research is more suitable for water distribution networks. However, the methodology could be adapted to other infrastructure systems as well.
ContributorsPiratla, Kalyan Ram (Author) / Ariaratnam, Samuel T (Thesis advisor) / Chasey, Allan (Committee member) / Lueke, Jason (Committee member) / Arizona State University (Publisher)
Created2012
150448-Thumbnail Image.png
Description
Concrete design has recently seen a shift in focus from prescriptive specifications to performance based specifications with increasing demands for sustainable products. Fiber reinforced composites (FRC) provides unique properties to a material that is very weak under tensile loads. The addition of fibers to a concrete mix provides additional ductility

Concrete design has recently seen a shift in focus from prescriptive specifications to performance based specifications with increasing demands for sustainable products. Fiber reinforced composites (FRC) provides unique properties to a material that is very weak under tensile loads. The addition of fibers to a concrete mix provides additional ductility and reduces the propagation of cracks in the concrete structure. It is the fibers that bridge the crack and dissipate the incurred strain energy in the form of a fiber-pullout mechanism. The addition of fibers plays an important role in tunnel lining systems and in reducing shrinkage cracking in high performance concretes. The interest in most design situations is the load where cracking first takes place. Typically the post crack response will exhibit either a load bearing increase as deflection continues, or a load bearing decrease as deflection continues. These behaviors are referred to as strain hardening and strain softening respectively. A strain softening or hardening response is used to model the behavior of different types of fiber reinforced concrete and simulate the experimental flexural response. Closed form equations for moment-curvature response of rectangular beams under four and three point loading in conjunction with crack localization rules are utilized. As a result, the stress distribution that considers a shifting neutral axis can be simulated which provides a more accurate representation of the residual strength of the fiber cement composites. The use of typical residual strength parameters by standards organizations ASTM, JCI and RILEM are examined to be incorrect in their linear elastic assumption of FRC behavior. Finite element models were implemented to study the effects and simulate the load defection response of fiber reinforced shotcrete round discrete panels (RDP's) tested in accordance with ASTM C-1550. The back-calculated material properties from the flexural tests were used as a basis for the FEM material models. Further development of FEM beams were also used to provide additional comparisons in residual strengths of early age samples. A correlation between the RDP and flexural beam test was generated based a relationship between normalized toughness with respect to the newly generated crack surfaces. A set of design equations are proposed using a residual strength correction factor generated by the model and produce the design moment based on specified concrete slab geometry.
ContributorsBarsby, Christopher (Author) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2011
150449-Thumbnail Image.png
Description
Current information on successful leadership and management practices is contradictory and inconsistent, which makes difficult to understand what successful business practices are and what are not. The purpose of this study is to identify a simple process that quickly and logically identifies consistent and inconsistent leadership and management criteria. The

Current information on successful leadership and management practices is contradictory and inconsistent, which makes difficult to understand what successful business practices are and what are not. The purpose of this study is to identify a simple process that quickly and logically identifies consistent and inconsistent leadership and management criteria. The hypothesis proposed is that Information Measurement Theory (IMT) along with the Kashiwagi Solution Model (KSM) is a methodology than can differentiate between accurate and inaccurate principles the initial part of the study about authors in these areas show how information is conflictive, and also served to establish an initial baseline of recommended practices aligned with IMT. The one author that excels in comparison to the rest suits the "Initial Baseline Matrix from Deming" which composes the first model. The second model is denominated the "Full Extended KSM-Matrix" composed of all the LS characteristics found among all authors and IMT. Both models were tested-out for accuracy. The second part of the study was directed to evaluate the perception of individuals on these principles. Two different groups were evaluated, one group of people that had prior training and knowledge of IMT; another group of people without any knowledge of IMT. The results of the survey showed more confusion in the group of people without knowledge to IMT and improved consistency and less variation in the group of people with knowledge in IMT. The third part of the study, the analysis of case studies of success and failure, identified principles as contributors, and categorized them into LS/type "A" characteristics and RS/type "C" characteristics, by applying the KSM. The results validated the initial proposal and led to the conclusion that practices that fall into the LS side of the KSM will lead to success, while practices that fall into the RS of the KSM will lead to failure. The comparison and testing of both models indicated a dominant support of the IMT concepts as contributors to success; while the KSM model has a higher accuracy of prediction.
ContributorsReynolds, Harry (Author) / Kashiwagi, Dean (Thesis advisor) / Sullivan, Kenneth (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2011
150678-Thumbnail Image.png
Description

One of the main requirements of designing perpetual pavements is to determine the endurance limit of Hot Mix Asphalt (HMA). The purpose of this study was to validate the endurance limit for HMA using laboratory beam fatigue tests. A mathematical procedure was developed to determine the endurance limit of HMA

One of the main requirements of designing perpetual pavements is to determine the endurance limit of Hot Mix Asphalt (HMA). The purpose of this study was to validate the endurance limit for HMA using laboratory beam fatigue tests. A mathematical procedure was developed to determine the endurance limit of HMA due to healing that occurs during the rest periods between loading cycles. Relating healing to endurance limit makes this procedure unique compared to previous research projects that investigated these concepts separately. An extensive laboratory testing program, including 468 beam tests, was conducted according to AASHTO T321-03 test procedure. Six factors that affect the fatigue response of HMA were evaluated: binder type, binder content, air voids, test temperature, rest period and applied strain. The endurance limit was determined when no accumulated damage occurred indicating complete healing. Based on the test results, a first generation predictive model was developed to relate stiffness ratio to material properties. A second generation stiffness ratio model was also developed by replacing four factors (binder type, binder content, air voids, and temperature) with the initial stiffness of the mixture, which is a basic material property. The model also accounts for the nonlinear effects of the rest period and the applied strain on the healing and endurance limit. A third generation model was then developed by incorporation the number of loading cycles at different locations along the fatigue degradation curve for each test in order to account for the nonlinearity between stiffness ratio and loading cycles. In addition to predicting endurance limit, the model has the ability to predict the number of cycles to failure at any rest period and stiffness combination. The model was used to predict fatigue relationship curves for tests with rest period and determining the K1, K2, and K3 fatigue cracking coefficients. The three generation models predicted close endurance limit values ranging from 22 to 204 micro strains. After developing the third generation stiffness ratio model, the predicted endurance limit values were integrated in the strain-Nf fatigue relationships as a step toward incorporating the endurance limit in the MEPDG software. The results of this study can be used to design perpetual pavements that can sustain a large number of loads if traffic volumes and vehicle weights are controlled.

ContributorsSouliman, Mena (Author) / Mamlouk, Michael S. (Thesis advisor) / Witczak, Matthew W. (Thesis advisor) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2012