Matching Items (16)
Filtering by

Clear all filters

151747-Thumbnail Image.png
Description
Heating of asphalt during production and construction causes the volatilization and oxidation of binders used in mixes. Volatilization and oxidation causes degradation of asphalt pavements by increasing the stiffness of the binders, increasing susceptibility to cracking and negatively affecting the functional and structural performance of the pavements. Degradation of asphalt

Heating of asphalt during production and construction causes the volatilization and oxidation of binders used in mixes. Volatilization and oxidation causes degradation of asphalt pavements by increasing the stiffness of the binders, increasing susceptibility to cracking and negatively affecting the functional and structural performance of the pavements. Degradation of asphalt binders by volatilization and oxidation due to high production temperature occur during early stages of pavement life and are known as Short Term Aging (STA). Elevated temperatures and increased exposure time to elevated temperatures causes increased STA of asphalt. The objective of this research was to investigate how elevated mixing temperatures and exposure time to elevated temperatures affect aging and stiffening of binders, thus influencing properties of the asphalt mixtures. The study was conducted in two stages. The first stage evaluated STA effect of asphalt binders. It involved aging two Performance Graded (PG) virgin asphalt binders, PG 76-16 and PG 64-22 at two different temperatures and durations, then measuring their viscosities. The second stage involved evaluating the effects of elevated STA temperature and time on properties of the asphalt mixtures. It involved STA of asphalt mixtures produced in the laboratory with the PG 64-22 binder at mixing temperatures elevated 25OF above standard practice; STA times at 2 and 4 hours longer than standard practices, and then compacted in a gyratory compactor. Dynamic modulus (E*) and Indirect Tensile Strength (IDT) were measured for the aged mixtures for each temperature and duration to determine the effect of different aging times and temperatures on the stiffness and fatigue properties of the aged asphalt mixtures. The binder test results showed that in all cases, there was increased viscosity. The results showed the highest increase in viscosity resulted from increased aging time. The results also indicated that PG 64-22 was more susceptible to elevated STA temperature and extended time than the PG 76-16 binders. The asphalt mixture test results confirmed the expected outcome that increasing the STA and mixing temperature by 25oF alters the stiffness of mixtures. Significant change in the dynamic modulus mostly occurred at four hour increase in STA time regardless of temperature.
ContributorsLolly, Rubben (Author) / Kaloush, Kamil (Thesis advisor) / Bearup, Wylie (Committee member) / Zapata, Claudia (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2013
150955-Thumbnail Image.png
Description
Front end planning (FEP) is an essential and valuable process that helps identify risks early in the capital project planning phases. With effective FEP, risks can potentially be mitigated through development of detailed scope definition and subsequent efficient project resource use. The thesis describes the FEP process that has been

Front end planning (FEP) is an essential and valuable process that helps identify risks early in the capital project planning phases. With effective FEP, risks can potentially be mitigated through development of detailed scope definition and subsequent efficient project resource use. The thesis describes the FEP process that has been developed over the past twenty years by the Construction Industry Institute (CII). Specifically, it details the FEP tools developed for early project planning and the data gathered to analyze the tools used within the CII community. Data from a March 2011 survey are given showing the tools commonly used, how those tools are used and the common barriers faced that prohibit successful FEP implementation. The findings from in-depth interviews are also shared in the thesis. The interviews were used to gather detail responses from organizations on the implementation of their FEP processes. In total, out of the 116 CII organizations, 59 completed the survey and over 75 percent of the respondents used at least one CII tool in their front end planning processes. Of the 59 survey respondents, 12 organizations participated in the in-depth interviews. The thesis concludes that CII organizations continue to find value in CII FEP tools due to the increase tool usage. Also the thesis concludes that organizations must have strong management commitment, smart succession planning and a standardized planning process to increase the likelihood of successful FEP strategies.
ContributorsBosfield, Roberta Patrice (Author) / Gibson, G.Edward (Thesis advisor) / Wiezel, Avi (Committee member) / Ernzen, James (Committee member) / Arizona State University (Publisher)
Created2012
149444-Thumbnail Image.png
Description
The construction industry is becoming more aware of its impact on the environment. It has become more sensitive to how it operates and how it can reduce the carbon footprint of the construction process. This research identifies the source of and quantities of the carbon emissions created by an operating

The construction industry is becoming more aware of its impact on the environment. It has become more sensitive to how it operates and how it can reduce the carbon footprint of the construction process. This research identifies the source of and quantities of the carbon emissions created by an operating modular home fabrication plant in producing, transporting and installing modular structures. This study demonstrates how to measure the carbon footprint created in the production of a modular home. It quantifies and reports the results on a home, on a single module and on a per square foot basis. The primary conclusions of this study are: a) electricity was found to be the largest energy source used in this fabrication process; b) the modular fabrication process consumes a significant amount of electrical energy per month; c) production volume has a bearing on the carbon footprint of each home since the carbon footprint for each period is allocated to every home produced in that period; and d) transportation of fabricated modules and set-up add to the carbon footprint. Further, a carbon calculator was produced and is included with the study. The tool calculates the impact of energy consumption on the carbon footprint of a modular factory or a modular home. It may be expanded to other process driven fabrication entities. This research is valuable to developers and builders who wish to measure the carbon impact of a modular new home delivery system. The study also provides a methodology for modular home fabricators to measure the carbon footprint of their factories and factory production.
ContributorsKawecki, Leonard Robert (Author) / Bashford, Howard H (Thesis advisor) / Davis, Joseph (Committee member) / Ernzen, James (Committee member) / Arizona State University (Publisher)
Created2010
189369-Thumbnail Image.png
Description
Large-scale civil infrastructure systems are critical for the functioning and development of any society. However, these systems are often vulnerable to degradation and the effects of aging, necessitating consistent monitoring and maintenance. Current methods for infrastructure maintenance primarily rely on human intervention and need the implementation of advanced sensing and

Large-scale civil infrastructure systems are critical for the functioning and development of any society. However, these systems are often vulnerable to degradation and the effects of aging, necessitating consistent monitoring and maintenance. Current methods for infrastructure maintenance primarily rely on human intervention and need the implementation of advanced sensing and computing technologies in field operations and maintenance (O&M) tasks. This research aimed to address these gaps and provide novel contributions. Specifically, the objectives of this study were to leverage artificial intelligence models to enhance point cloud noise processing, to automate tree species detection using Mask R-CNN, and to integrate imagery data and LiDAR datasets for real-time terrain analysis. First, the study proposed leverages neural networks to eliminate unwanted noise from point cloud datasets, enhancing the accuracy and reliability of infrastructure data. Secondly, the research integrated Mask R-CNN into automated tree species detection. This component offers an efficient solution to identify and classify vegetation surrounding infrastructure, enabling infrastructure managers to devise proactive vegetation management strategies, thereby reducing risks associated with tree-related incidents. Lastly, the study fused image and LiDAR datasets to support real-time terrain analysis. This integrated approach provides a comprehensive understanding of terrain characteristics, allowing infrastructure managers to assess slope, elevation, and other relevant factors, facilitating proactive maintenance interventions and mitigating risks associated with erosion. These contributions collectively underscore the potential of artificial intelligence models in advancing the operations and maintenance practices of large civil infrastructure systems. By leveraging these models, infrastructure managers can optimize decision-making processes, streamline maintenance efforts, and enhance critical infrastructure networks' overall resilience and sustainability.
ContributorsPaladugu, Bala Sai Krishna (Author) / Grau, David (Thesis advisor) / Ernzen, James (Committee member) / Standage, Richard (Committee member) / Arizona State University (Publisher)
Created2023
193624-Thumbnail Image.png
Description
Innovative project delivery methods and project management systems have advanced the world of construction engineering and management, yet the benefits of their applications remain not wholly accomplished without accompanying them with the suitable methods of implementation. As integrated delivery methods have arisen from the need for faster project delivery with

Innovative project delivery methods and project management systems have advanced the world of construction engineering and management, yet the benefits of their applications remain not wholly accomplished without accompanying them with the suitable methods of implementation. As integrated delivery methods have arisen from the need for faster project delivery with early teams’ involvement, their benefits are not attained unless they are executed by the most qualified contracting firms for the job and administered following collaborative approaches. More holistically, integrated project management systems support meeting project guidelines while enforcing the social role played by individuals and teams in addressing challenges that influence their technical performance. Thus, the author was one of the 41 team members that developed an innovative IPM framework which is the Integrated Project/Program Management Maturity and Environment Total risk Rating known as IP2M METRR that helps them review their project team environment and levels of system maturity. Like the integrated delivery methods, an IPM framework is not expected to solve challenges on its own unless supported with guidance for practitioners to efficiently implement the framework. Thus, in this dissertation the author aims to address the challenges by studying the implementation of innovative methods for integrated delivery and integrated management in large government-owned engineering construction projects. The objective is to guide the implementation of (1) design-build (D-B) and construction manager-general contractor (CM-GC) methods in the contractor procurement phase and post-award contract administration phase; and (2) earned value management system (integrated project management application) through a paradigm shift in its assessment, using the IP2M METRR, and focusing on the novel sociotechnical aspect. The author studied data from 128 government-owned projects with total worth of about $46.7 U.S. billion, 11 experts, and 215 practitioners; and used mixed-methods research and industry engaging research techniques, including remote research charrettes which the author supported its development and testing and reported on in this dissertation.The contributions of this dissertation include: (1) identifying best practices for D-B and CM-GC contractor procurement, (2) developing D-B and CM-GC contract administration tool selection framework, (3) gauging lessons learned on IP2M METRR application, (4) identifying issues and recommendations in IPM application implementation, (5) validating IP2M METRR framework, and (6) developing and testing industry-engaging research approach.
ContributorsSanboskani, Hala (Author) / El Asmar, Mounir (Thesis advisor) / Grau, David (Thesis advisor) / Gibson, Jr., George E. (Committee member) / Bearup, Wylie (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2024
157344-Thumbnail Image.png
Description
The rate of urbanization has been impacted by global economic growth. A strong economy results in more people moving to already crowded urban centers to take advantage of increased employment opportunities often resulting in sprawling of the urban area. More natural land resources are being exploited to accommodate these anthropogenic

The rate of urbanization has been impacted by global economic growth. A strong economy results in more people moving to already crowded urban centers to take advantage of increased employment opportunities often resulting in sprawling of the urban area. More natural land resources are being exploited to accommodate these anthropogenic activities. Subsequently, numerous natural land resources such as green areas or porous soil, which are less flood-prone and more permeable are being converted into buildings, parking lots, roads and underground utilities that are less permeable to stormwater runoff from rain events. With the diminishing of the natural landscape that can drain stormwater during a rainfall event, urban underground drainage systems are being designed and built to tackle the excess runoff resulting from urbanization. However, the construction of a drainage system is expensive and usually involves massive land excavations and tremendous environmental disturbances. The option for constructing an underground drainage system is even more difficult in dense urban environments due to the complicated underground environments, creating a need for low footprint solutions. This need has led to emerging opportunities for low impact development (LID) methods or green infrastructures, which are viewed as an environmentally friendly alternative for dealing with stormwater runoff. LID mimics the pre-development environment to retain the stormwater runoff through infiltration, retention, detention and evaporation. Despite a significant amount of prior research having been conducted to analyze the performance of runoff volume reduction and peak flow decrement of various green infrastructures, little is known about the economic benefits of using LID practices.

This dissertation fills the gap in the knowledge regarding the life-cycle-cost effectiveness of green infrastructure in current urban developments. This study’s two research objectives are:

(1) Develop a life cycle cost calculation template to analyze the cost benefits of using LID compared to the traditional drainage system

(2) Quantify the cost benefits based on the real-world construction projects

A thorough literature review led to the data collection of the hydrological benefits of using LIDs in conjunction with overviewing three real-world construction projects to quantify the cost benefits of LIDs.
ContributorsZhang, Pengfei (Author) / Ariaratnam, Samuel T (Thesis advisor) / Vivoni, Enrique R (Committee member) / Bearup, Wylie (Committee member) / Arizona State University (Publisher)
Created2019
157056-Thumbnail Image.png
Description
Planning efforts conducted during the early stages of a construction project, known

as front end planning (FEP), have a large impact on project success and significant

influence on the configuration of the final project. As a key component of FEP, front end

engineering design (FEED) plays an essential role in the overall success

Planning efforts conducted during the early stages of a construction project, known

as front end planning (FEP), have a large impact on project success and significant

influence on the configuration of the final project. As a key component of FEP, front end

engineering design (FEED) plays an essential role in the overall success of large industrial

projects. The primary objective of this dissertation focuses on FEED maturity and accuracy

and its impact on project performance. The author was a member of the Construction

Industry Institute (CII) Research Team (RT) 331, which was tasked to develop the FEED

Maturity and Accuracy Total Rating System (FEED MATRS), pronounced “feed matters.”

This dissertation provides the motivation, methodology, data analysis, research findings

(which include significant correlations between the maturity and accuracy of FEED and

project performance), applicability and contributions to academia and industry. A scientific

research methodology was employed in this dissertation that included a literature review,

focus groups, an industry survey, data collection workshops, in-progress projects testing,

and statistical analysis of project performance. The results presented in this dissertation are

based on input from 128 experts in 57 organizations and a data sample of 33 completed

and 11 on-going large industrial projects representing over $13.9 billion of total installed

cost. The contributions of this work include: (1) developing a tested FEED definition for

the large industrial projects sector, (2) determining the industry’s state of practice for

measuring FEED deliverables, (3) developing an objective and scalable two-dimensional

method to measure FEED maturity and accuracy, and (4) quantifying that projects with

high FEED maturity and accuracy outperformed projects with low FEED maturity and

accuracy by 24 percent in terms of cost growth, in relation to the approved budget.
ContributorsYussef, Abdulrahman (Author) / Gibson, Jr., G. Edward (Thesis advisor) / El Asmar, Mounir (Thesis advisor) / Bearup, Wylie (Committee member) / Wiezel, Avi (Committee member) / Arizona State University (Publisher)
Created2019
157260-Thumbnail Image.png
Description
Deformation during hydration of concrete includes curling at joints and terminations. Previous research has explored mix designs, chemical additives, and other material factors to minimize slab distortion due to curling. This research study explores the development and use of externally applied silicone-based compounds after both the placing and

Deformation during hydration of concrete includes curling at joints and terminations. Previous research has explored mix designs, chemical additives, and other material factors to minimize slab distortion due to curling. This research study explores the development and use of externally applied silicone-based compounds after both the placing and cutting of joints. This exploratory study presents the results of controlled testing and a field study results that include distortion of contraction joints as measured with a Spectra LL300N under existing environmental conditions. Specifically, the study presents the results of a side-by-side test of two slabs, a base case, and a silicone-altered case, as well as field measures of two large commercial buildings using the developed methods. The results of the study show reduced distortion due to curling as compared to standard comparative slabs and warrant the continued exploration and testing of the concept.
ContributorsStandage, Richard Mc Rae (Author) / Ernzen, James (Thesis advisor) / Sullivan, Kenneth (Committee member) / Knutson, Kraig (Committee member) / Arizona State University (Publisher)
Created2019
157081-Thumbnail Image.png
Description
The demand for new highway infrastructure, the need to repair aging infrastructure, and the drive to optimize public expenditures on infrastructure have led transportation agencies toward alternative contracting methods (ACMs) such as design-build (DB) and construction manager/general contractor (CM/GC). U.S. transportation agencies have substantial experience with traditional design-bid-build delivery. To

The demand for new highway infrastructure, the need to repair aging infrastructure, and the drive to optimize public expenditures on infrastructure have led transportation agencies toward alternative contracting methods (ACMs) such as design-build (DB) and construction manager/general contractor (CM/GC). U.S. transportation agencies have substantial experience with traditional design-bid-build delivery. To promote ACMs, the Federal Highway Administration and the National Cooperative Highway Research Program (NCRHP) have published ACM guidance documents. However, the published material and research tend to focus on pre-award activities. The need for guidance on ACM post-award activities is confirmed in NCHRP’s request for a guidebook focusing on ACM contract administration (NCHRP 2016).

This dissertation fills the crucial knowledge gap in contract administration functions and tools for DB and CM/GC highway project delivery. First, this research identifies and models contract administration functions in DBB, CM/GC, and DB using integrated definition modeling (IDEF0). Second, this research identifies and analyzes DB and CM/GC tools for contract administration by conducting 30 ACM project case studies involving over 90 ACM practitioners. Recommendations on appropriate use regarding project phase, complexity, and size were gathered from 16 ACM practitioners. Third, the alternative technical concepts tool was studied. Data from 30 DB projects was analyzed to explore the timing of DB procurement and DB initial award performance in relation to the project influence curve. Types of innovations derived from ATCs are discussed. Considerable industry input at multiple stages grounds this research in professional practice.

Results indicate that the involvement of the contractor during the design phase for both DB and CM/GC delivery creates unique contract administration functions that need unique tools. Thirty-six DB and CM/GC tools for contract administration are identified with recommendations for effective implementation. While strong initial award performance is achievable in DB projects, initial award performance in this sample of projects is only loosely tied to the level of percent base design at procurement. Cost savings typically come from multiple ATCs, and innovations tend to be incremental rather than systemic, disruptive, or radical. Opportunity for innovation on DB highway projects is influenced by project characteristics and engaging the DB entity after pre-project planning.
ContributorsPapajohn, Dean (Author) / El Asmar, Mounir (Thesis advisor) / Gibson, G. Edward (Committee member) / Bearup, Wylie (Committee member) / Molenaar, Keith R. (Committee member) / Arizona State University (Publisher)
Created2019
154239-Thumbnail Image.png
Description
Much of the water and wastewater lines in the United States are nearing the end of their useful life. A significant reinvestment is needed in the upcoming decades to replace or rehabilitate the water and wastewater infrastructure. Currently, the traditional method for delivering water and wastewater pipeline engineering and construction

Much of the water and wastewater lines in the United States are nearing the end of their useful life. A significant reinvestment is needed in the upcoming decades to replace or rehabilitate the water and wastewater infrastructure. Currently, the traditional method for delivering water and wastewater pipeline engineering and construction projects is design-bid-build (DBB). The traditional DBB delivery system is a sequential low-integration process and can lead to inefficiencies and adverse relationships between stakeholders. Alternative project delivery methods (APDM) such as Construction Manager at Risk (CMAR) have been introduced to increase stakeholder integration and ultimately enhance project performance. CMAR project performance impacts have been studied in the horizontal and vertical construction industries. However, the performance of CMAR projects in the pipeline engineering and construction industry has not been quantitatively studied.

The dissertation fills this gap in knowledge by performing the first quantitative analysis of CMAR performance on pipeline engineering and construction projects. This study’s two research objectives are:

(1) Develop a CMAR baseline of commonly measured project performance metrics

(2) Statistically compare the cost and schedule performance of CMAR to that of the traditional DBB delivery method

A thorough literature review led to the development of a data collection survey used in conjunction with structured interviews to gather qualitative and quantitative performance data from 66 completed water and wastewater pipeline projects. Performance data analysis was conducted to provide performance benchmarks for CMAR projects and to compare the performance of CMAR and DBB.

This study provides the first CMAR performance benchmark for pipeline engineering and construction projects. The results span across seven metrics in four performance areas (cost, schedule, project change, and communication). Pipeline projects delivered using CMAR have a median cost and schedule growth of -5% and 5.10%, respectively. These results are significantly improved from DBB baseline performance shown in other industries. To verify this, a statistical analysis was done to compare the cost and schedule performance of CMAR to similar DBB pipeline projects. The results show that CMAR pipeline projects are being delivered with 6.5% less cost growth and with 12.5% less schedule growth than similar DBB projects, providing owners with increased certainty when delivering their pipeline projects.
ContributorsFrancom, Tober C (Author) / Ariaratnam, Samuel (Thesis advisor) / El Asmar, Mounir (Thesis advisor) / Bearup, Wylie (Committee member) / Arizona State University (Publisher)
Created2015