Matching Items (87)
Filtering by

Clear all filters

152412-Thumbnail Image.png
Description
Type 2 diabetes affects approximately 7.3% of Americans, leading to debilitating and life-threatening comorbidities. Estrogen and testosterone levels have been linked to inflammatory and oxidative stress markers, as well as glucose and insulin concentrations. The present study was designed to determine the link between sex differences, glucose control, and inflammation

Type 2 diabetes affects approximately 7.3% of Americans, leading to debilitating and life-threatening comorbidities. Estrogen and testosterone levels have been linked to inflammatory and oxidative stress markers, as well as glucose and insulin concentrations. The present study was designed to determine the link between sex differences, glucose control, and inflammation and oxidative stress related to daily almond ingestion among subjects with type 2 diabetes. Subjects were randomized to an intervention group, which received 1.5 oz. almonds daily for 12 weeks, or to the matched control group, which maintained their current diet. No significant differences were found in changes in glucose control in response to ingestion of almonds. However, CRP was significantly reduced by an average of 36.2% in those that received almonds daily (p = 0.017). Although not significant, women randomized to the intervention group appeared to have improvements in insulin resistance compared to women with no dietary change. Results suggest that the addition of almonds to the diet may be an effective intervention for managing inflammation associated with type 2 diabetes. The addition of almonds to the diet is a low cost intervention that is easily implemented into daily lifestyle. Due to the small sample size, additional studies are needed to determine the impact and mechanisms of almond ingestion in subjects with type 2 diabetes.
ContributorsPetersen, Katherine Nicole (Author) / Karen, Sweazea (Thesis advisor) / Carol, Johnston (Committee member) / Christy, Lespron (Committee member) / Arizona State University (Publisher)
Created2014
150702-Thumbnail Image.png
Description
Extremely thick cranial vaults have been noted as a diagnostic characteristic of Homo erectus since the first fossil of the species was identified, but potential mechanisms underlying this seemingly unique trait have not been rigorously investigated. Cranial vault thickness (CVT) is not a monolithic trait, and the responsiveness of its

Extremely thick cranial vaults have been noted as a diagnostic characteristic of Homo erectus since the first fossil of the species was identified, but potential mechanisms underlying this seemingly unique trait have not been rigorously investigated. Cranial vault thickness (CVT) is not a monolithic trait, and the responsiveness of its layers to environmental stimuli is unknown. Identifying factors that affect CVT would be exceedingly valuable in teasing apart potential contributors to thick vaults in the Pleistocene. Four hypotheses were tested using CT scans of skulls of more than 1100 human and non-human primates. Data on total frontal, parietal, and occipital bone thickness and bone composition were collected to test the hypotheses: H1. CVT is an allometric consequence of brain or body size. H2. Thick cranial vaults are a response to long, low cranial vault shape. H3. High masticatory stress causes localized thickening of cranial vaults. H4. Activity-mediated systemic hormone levels affect CVT. Traditional comparative methods were used to identify features that covary with CVT across primates to establish behavior patterns that might correlate with thick cranial vaults. Secondly, novel experimental manipulation of a model organism, Mus musculus, was used to evaluate the relative plasticity of CVT. Finally, measures of CVT in fossil hominins were described and discussed in light of the extant comparative and experimental results. This dissertation reveals previously unknown variation among extant primates and humans and illustrates that Homo erectus is not entirely unique among primates in its CVT. The research suggests that it is very difficult to make a mouse grow a thick head, although it can be genetically programmed to have one. The project also identifies a possible hominin synapomorphy: high diploë ratios compared to non-human primates. It also found that extant humans differ from non-human primates in overall pattern of which cranial vault bones are thickest. What this project was unable to do was definitively provide an explanation for why and how Homo erectus grew thick skulls. Caution is required when using CVT as a diagnostic trait for Homo erectus, as the results presented here underscore the complexity inherent in its evolution and development.
ContributorsCopes, Lynn (Author) / Kimbel, William H. (Thesis advisor) / Schwartz, Gary T (Committee member) / Spencer, Mark A. (Committee member) / Ravosa, Matthew J. (Committee member) / Arizona State University (Publisher)
Created2012
150900-Thumbnail Image.png
Description
Birds have plasma glucose levels that are 1.5-2 times greater than mammals of similar body mass in addition to higher free fatty acid concentrations, both of which would typically impair endothelium-dependent vasodilation if observed in mammals. Endothelium-dependent vasodilation can be stimulated in mammals through the use of acetylcholine (ACh), which

Birds have plasma glucose levels that are 1.5-2 times greater than mammals of similar body mass in addition to higher free fatty acid concentrations, both of which would typically impair endothelium-dependent vasodilation if observed in mammals. Endothelium-dependent vasodilation can be stimulated in mammals through the use of acetylcholine (ACh), which primarily acts through nitric oxide (NO) and cyclooxygenase (COX)-mediated pathways, with varying reliance on endothelial-derived hyperpolarizing factors (EDHFs). Very few studies have been conducted on small resistance systemic arteries from birds. The hypothesis was that because birds have naturally high glucose and free fatty acid concentrations, ACh-induced vasodilation of isolated arteries from mourning doves (Zenaida macroura) would be independent of endothelial-derived factors and resistant to high glucose-mediated vascular dysfunction. Small resistance mesenteric and cranial tibial (c. tibial) arteries were pre-constricted to 50% of resting inner diameter with phenyleprine then exposed to increasing doses of ACh (10-9 to 10-5 μM) or the NO donor, sodium nitroprusside (SNP; 10-12 to 10-3 μM). For both vessel beds, ACh-induced vasodilation occurred mainly through the activation of potassium channels, whereas vasodilation of mesenteric arteries additionally occurred through COX. Although arteries from both vessel beds fully dilated with exposure to sodium nitroprusside, ACh-mediated vasodilation was independent of NO. To examine the effect of high glucose on endothelium-dependent vasodilation, ACh dose response curves were conducted following exposure of isolated c. tibial arteries to either a control solution (20mM glucose) or high glucose (30mM). ACh-induced vasodilation was significantly impaired (p = 0.013) when exposed to high glucose, but normalized in subsequent vessels with pre-exposure to the superoxide dismutase mimetic tiron (10 mM). Superoxide concentrations were likewise significantly increased (p = 0.0072) following exposure to high glucose. These findings indicate that dove arteries do not appear to have endogenous mechanisms to counteract the deleterious effects of oxidative stress. Additional studies are required to assess whether endogenous mechanisms exist to protect avian vascular reactivity from systemic hyperglycemia.
ContributorsJarrett, Catherine Lee (Author) / Sweazea, Karen L (Thesis advisor) / Johnston, Carol (Committee member) / Gaesser, Glenn (Committee member) / Arizona State University (Publisher)
Created2012
150816-Thumbnail Image.png
Description
Land management practices such as domestic animal grazing can alter plant communities via changes in soil structure and chemistry, species composition, and plant nutrient content. These changes can affect the abundance and quality of plants consumed by insect herbivores with consequent changes in population dynamics. These population changes can translate

Land management practices such as domestic animal grazing can alter plant communities via changes in soil structure and chemistry, species composition, and plant nutrient content. These changes can affect the abundance and quality of plants consumed by insect herbivores with consequent changes in population dynamics. These population changes can translate to massive crop damage and pest control costs. My dissertation focused on Oedaleus asiaticus, a dominant Asian locust, and had three main objectives. First, I identified morphological, physiological, and behavioral characteristics of the migratory ("brown") and non-migratory ("green") phenotypes. I found that brown morphs had longer wings, larger thoraxes and higher metabolic rates compared to green morphs, suggesting that developmental plasticity allows greater migratory capacity in the brown morph of this locust. Second, I tested the hypothesis of a causal link between livestock overgrazing and an increase in migratory swarms of O. asiaticus. Current paradigms generally assume that increased plant nitrogen (N) should enhance herbivore performance by relieving protein-limitation, increasing herbivorous insect populations. I showed, in contrast to this scenario, that host plant N-enrichment and high protein artificial diets decreased the size and viability of O. asiaticus. Plant N content was lowest and locust abundance highest in heavily livestock-grazed fields where soils were N-depleted, likely due to enhanced erosion and leaching. These results suggest that heavy livestock grazing promotes outbreaks of this locust by reducing plant protein content. Third, I tested for the influence of dietary imbalance, in conjunction with high population density, on migratory plasticity. While high population density has clearly been shown to induce the migratory morph in several locusts, the effect of diet has been unclear. I found that locusts reared at high population density and fed unfertilized plants (i.e. high quality plants for O. asiaticus) had the greatest migratory capacity, and maintained a high percent of brown locusts. These results did not support the hypothesis that poor-quality resources increased expression of migratory phenotypes. This highlights a need to develop new theoretical frameworks for predicting how environmental factors will regulate migratory plasticity in locusts and perhaps other insects.
ContributorsCease, Arianne (Author) / Harrison, Jon (Thesis advisor) / Elser, James (Thesis advisor) / DeNardo, Dale (Committee member) / Quinlan, Michael (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2012
150818-Thumbnail Image.png
Description
While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria

While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria account for the majority of oxygen consumption during aerobic exercise, the primary goal was to investigate differences in isolated muscle mitochondria between these species and to examine to what extent factors intrinsic to mitochondria may account for the behavior observed in the intact tissue and whole organism. First, maximal enzyme activities were assessed in sparrow and rat mitochondria. Citrate synthase and aspartate aminotransferase activity were higher in sparrow compared to rat mitochondria, while glutamate dehydrogenase activity was lower. Sparrow mitochondrial NAD-linked isocitrate dehydrogenase activity was dependent on phosphate, unlike the mammalian enzyme. Next, the rate of oxygen consumption (JO), electron transport chain (ETC) activity, and reactive oxygen species (ROS) production were assessed in intact mitochondria. Maximal rates of fat oxidation were lower than for carbohydrate in rat but not sparrow mitochondria. ETC activity was higher in sparrows, but no differences were found in ROS production between species. Finally, fuel selection and control of respiration at three rates between rest and maximum were assessed. Mitochondrial fuel oxidation and selection mirrored that of the whole body; in rat mitochondria the reliance on carbohydrate increased as the rate of oxygen consumption increased, whereas fat dominated under all conditions in the sparrow. These data indicate fuel selection, at least in part, can be modulated at the level of the mitochondrial matrix when multiple substrates are present at saturating levels. As an increase in matrix oxidation-reduction potential has been linked to a suppression of fat oxidation and high ROS production, the high ETC activity relative to dehydrogenase activity in avian compared to mammalian mitochondria may result in lower matrix oxidation-reduction potential, allowing fatty acid oxidation to proceed while also resulting in low ROS production in vivo.
ContributorsKuzmiak, Sarah (Author) / Willis, Wayne T (Thesis advisor) / Mandarino, Lawrence (Committee member) / Sweazea, Karen (Committee member) / Harrison, Jon (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2012
151015-Thumbnail Image.png
Description
Fixed-pointer moving-scale tape displays are a compact way to present wide range dynamic data, and are commonly employed in aircraft and spacecraft to display the primary parameters of airspeed, altitude and heading. A limitation of the moving tape format is its inability to natively display off scale target, reference or

Fixed-pointer moving-scale tape displays are a compact way to present wide range dynamic data, and are commonly employed in aircraft and spacecraft to display the primary parameters of airspeed, altitude and heading. A limitation of the moving tape format is its inability to natively display off scale target, reference or 'bug' values. The hypothesis tested was that a non-linear fisheye presentation (made possible by modern display technology) would maintain the essential functionality and compactness of existing moving tape displays while increasing situational awareness by ecologically displaying a wider set of reference values. Experimentation showed that the speed and accuracy of reading the center system value was not significantly changed with two types of expanded range displays. The limited situational awareness tests did not show a significant improvement with the new displays, but since no functionality was degraded further testing of expanded range displays may be productive.
ContributorsEnglish, Dave (Author) / Branaghan, Russell J (Thesis advisor) / Cooke, Nancy J. (Committee member) / Sanchez, Christopher A (Committee member) / Arizona State University (Publisher)
Created2012
150474-Thumbnail Image.png
Description
Conditions during development can shape the expression of traits at adulthood, a phenomenon called developmental plasticity. In this context, factors such as nutrition or health state during development can affect current and subsequent physiology, body size, brain structure, ornamentation, and behavior. However, many of the links between developmental and adult

Conditions during development can shape the expression of traits at adulthood, a phenomenon called developmental plasticity. In this context, factors such as nutrition or health state during development can affect current and subsequent physiology, body size, brain structure, ornamentation, and behavior. However, many of the links between developmental and adult phenotype are poorly understood. I performed a series of experiments using a common molecular currency - carotenoid pigments - to track somatic and reproductive investments through development and into adulthood. Carotenoids are red, orange, or yellow pigments that: (a) animals must acquire from their diets, (b) can be physiologically beneficial, acting as antioxidants or immunostimulants, and (c) color the sexually attractive features (e.g., feathers, scales) of many animals. I studied how carotenoid nutrition and immune challenges during ontogeny impacted ornamental coloration and immune function of adult male mallard ducks (Anas platyrhynchos). Male mallards use carotenoids to pigment their yellow beak, and males with more beaks that are more yellow are preferred as mates, have increased immune function, and have higher quality sperm. In my dissertation work, I established a natural context for the role that carotenoids and body condition play in the formation of the adult phenotype and examined how early-life experiences, including immune challenges and dietary access to carotenoids, affect adult immune function and ornamental coloration. Evidence from mallard ducklings in the field showed that variation in circulating carotenoid levels at hatch are likely driven by maternal allocation of carotenoids, but that carotenoid physiology shifts during the subsequent few weeks to reflect individual foraging habits. In the lab, adult beak color expression and immune function were more tightly correlated with body condition during growth than body condition during subsequent stages of development or adulthood. Immune challenges during development affected adult immune function and interacted with carotenoid physiology during adulthood, but did not affect adult beak coloration. Dietary access to carotenoids during development, but not adulthood, also affected adult immune function. Taken together, these results highlight the importance of the developmental stage in shaping certain survival-related traits (i.e., immune function), and lead to further questions regarding the development of ornamental traits.
ContributorsButler, Michael (Author) / McGraw, Kevin J. (Thesis advisor) / Chang, Yung (Committee member) / Deviche, Pierre (Committee member) / DeNardo, Dale (Committee member) / Rutowski, Ronald (Committee member) / Arizona State University (Publisher)
Created2012
151209-Thumbnail Image.png
Description
Broaden and build theory (BBT; Fredrickson, 1998; 2001) postulates that positive emotions expand the scope of one's attention and thought-action repertoires (Fredrickson & Branigan, 2005). Within the boundaries of BBT, the undoing hypothesis (Fredrickson, 1998, Fredrickson & Levenson, 1998) argues that positive emotions themselves do not bring forth specific action

Broaden and build theory (BBT; Fredrickson, 1998; 2001) postulates that positive emotions expand the scope of one's attention and thought-action repertoires (Fredrickson & Branigan, 2005). Within the boundaries of BBT, the undoing hypothesis (Fredrickson, 1998, Fredrickson & Levenson, 1998) argues that positive emotions themselves do not bring forth specific action tendencies or urges; therefore, they do not consequently require an increase in cardiovascular activity to carry out the urge. On the other hand, positive emotions have evolved to subdue the cardiovascular response previously initiated by negative emotions. This dissertation proposes that the real power of positive emotions might be to undo not the effects of negative emotions themselves, however, but simply reduce the arousal itself. This dissertation used minor physiological arousal (e.g., a step-stool task) to simulate the cardiovascular effects of the stress manipulations used in previous tests of the undoing hypothesis by Fredrickson and colleagues. This dissertation asks if positive emotions undo the cardiovascular reactivity of an emotionally neutral stimulus. Positive emotions were induced through one film clip (i.e., a happy film clip) and was compared to a neutral film clip (no emotion elicited). An experimental design measured the effects of arousal induction and film clip on participants' cardiovascular activity. Results indicated that positive emotions had the same effect as no emotions on participants' cardiovascular activity. Implications for theory and research are provided, as well as an assessment of the study's strengths and limitations. Finally, several directions for future research are offered.
ContributorsDeiss, Douglas M (Author) / Floyd, Kory (Thesis advisor) / Mongeau, Paul (Committee member) / Thompson, Marilyn (Committee member) / Arizona State University (Publisher)
Created2012
151272-Thumbnail Image.png
Description
In social insect colonies, as with individual animals, the rates of biological processes scale with body size. The remarkable explanatory power of metabolic allometry in ecology and evolutionary biology derives from the great diversity of life exhibiting a nonlinear scaling pattern in which metabolic rates are not proportional to mass,

In social insect colonies, as with individual animals, the rates of biological processes scale with body size. The remarkable explanatory power of metabolic allometry in ecology and evolutionary biology derives from the great diversity of life exhibiting a nonlinear scaling pattern in which metabolic rates are not proportional to mass, but rather exhibit a hypometric relationship with body size. While one theory suggests that the supply of energy is a major physiological constraint, an alternative theory is that the demand for energy is regulated by behavior. The central hypothesis of this dissertation research is that increases in colony size reduce the proportion of individuals actively engaged in colony labor with consequences for energetic scaling at the whole-colony level of biological organization. A combination of methods from comparative physiology and animal behavior were developed to investigate scaling relationships in laboratory-reared colonies of the seed-harvester ant, Pogonomyrmex californicus. To determine metabolic rates, flow-through respirometry made it possible to directly measure the carbon dioxide production and oxygen consumption of whole colonies. By recording video of colony behavior, for which ants were individually paint-marked for identification, it was possible to reconstruct the communication networks through which information is transmitted throughout the colony. Whole colonies of P. californicus were found to exhibit a robust hypometric allometry in which mass-specific metabolic rates decrease with increasing colony size. The distribution of walking speeds also scaled with colony size so that larger colonies were composed of relatively more inactive ants than smaller colonies. If colonies were broken into random collections of workers, metabolic rates scaled isometrically, but when entire colonies were reduced in size while retaining functionality (queens, juveniles, workers), they continued to exhibit a metabolic hypometry. The communication networks in P. californicus colonies contain a high frequency of feed-forward interaction patterns consistent with those of complex regulatory systems. Furthermore, the scaling of these communication pathways with size is a plausible mechanism for the regulation of whole-colony metabolic scaling. The continued development of a network theory approach to integrating behavior and metabolism will reveal insights into the evolution of collective animal behavior, ecological dynamics, and social cohesion.
ContributorsWaters, James S., 1983- (Author) / Harrison, Jon F. (Thesis advisor) / Quinlan, Michael C. (Committee member) / Pratt, Stephen C. (Committee member) / Fewell, Jennifer H. (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2012
151122-Thumbnail Image.png
Description
Parental care provides many benefits to offspring. One widely realized benefit is enhanced regulation of offspring's thermal environment. The developmental thermal environment during development can be optimized behaviorally through nest site selection and brooding, and it can be further enhanced by physiological heat production. In fact, enhancement of the developmental

Parental care provides many benefits to offspring. One widely realized benefit is enhanced regulation of offspring's thermal environment. The developmental thermal environment during development can be optimized behaviorally through nest site selection and brooding, and it can be further enhanced by physiological heat production. In fact, enhancement of the developmental thermal environment has been proposed as the initial driving force for the evolution of endothermy in bird and mammals. I used pythons (Squamata: Pythonidae) to expand existing knowledge of behavioral and physiological parental tactics used to regulate offspring thermal environment. I first demonstrated that brooding behavior in the Children's python (Antaresia childreni) is largely driven by internal mechanisms, similar to solitary birds, suggesting that the early evolution of the parent-offspring association was probably hormonally driven. Two species of python are known to be facultatively thermogenic (i.e., are endothermic during reproduction). I expand current knowledge of thermogenesis in Burmese pythons (Python molurus) by demonstrating that females use their own body temperature to modulate thermogenesis. Although pythons are commonly cited as thermogenic, the actual extent of thermogenesis within the family Pythonidae is unknown. Thus, I assessed the thermogenic capability of five previously unstudied species of python to aid in understanding phylogenetic, morphological, and distributional influences on thermogenesis in pythons. Results suggest that facultative thermogenesis is likely rare among pythons. To understand why it is rare, I used an artificial model to demonstrate that energetic costs to the female likely outweigh thermal benefits to the clutch in species that do not inhabit cooler latitudes or lack large energy reserves. In combination with other studies, these results show that facultative thermogenesis during brooding in pythons likely requires particular ecological and physiological factors for its evolution.
ContributorsBrashears, Jake (Author) / DeNardo, Dale (Thesis advisor) / Harrison, Jon (Committee member) / Deviche, Pierre (Committee member) / McGraw, Kevin (Committee member) / Smith, Andrew (Committee member) / Arizona State University (Publisher)
Created2012