Matching Items (15)
Filtering by

Clear all filters

152747-Thumbnail Image.png
Description
ABSTRACT The hormone leptin is an important regulator of body weight and energy balance, while nitric oxide (NO) produced in the blood vessels is beneficial for preventing disease-induced impaired vasodilation and hypertension. Elevations in the free radical superoxide can result in impaired vasodilation through scavenging of NO. Omega 3 is

ABSTRACT The hormone leptin is an important regulator of body weight and energy balance, while nitric oxide (NO) produced in the blood vessels is beneficial for preventing disease-induced impaired vasodilation and hypertension. Elevations in the free radical superoxide can result in impaired vasodilation through scavenging of NO. Omega 3 is a polyunsaturated fatty acid that is beneficial at reducing body weight and in lowering many cardiovascular risk factors like atherosclerosis. The present study was designed to examine the change in plasma concentrations of leptin, nitric oxide, and the antioxidant superoxide dismutase in addition to examining the association between leptin and NO in healthy normal weight adult female subjects before and following omega 3 intakes. Participants were randomly assigned to either a fish oil group (600 mg per day) or a control group (1000 mg of coconut oil per day) for 8 weeks. Results showed no significant difference in the percent change of leptin over the 8 week supplementation period for either group (15.3±31.9 for fish oil group, 7.83±27 for control group; p=0.763). The percent change in NO was similarly not significantly altered in either group (-1.97±22 decline in fish oil group, 11.8±53.9 in control group; p=0.960). Likewise, the percent change in superoxide dismutase for each group was not significant following 8 weeks of supplementation (fish oil group: 11.94±20.94; control group: 11.8±53.9; p=0.362). The Pearson correlation co-efficient comparing the percent change of both leptin and NO was r2= -0.251 demonstrating a mildly negative, albeit insignificant, relationship between these factors. Together, these findings suggest that daily supplementation with 600 mg omega 3 in healthy females is not beneficial for improving these cardiovascular risk markers. Future studies in this area should include male subjects as well as overweight subjects with larger doses of fish oil that are equivalent to three or more servings per week. The importance of gender cannot be underestimated since estrogen has protective effects in the vasculature of females that may have masked any further protective effects of the fish oil. In addition, overweight individuals are often leptin-resistant and develop impaired vasodilation resulting from superoxide-mediated scavenging of nitric oxide. Therefore, the reported antioxidant and weight loss properties of omega 3 supplementation may greatly benefit overweight individuals.
ContributorsAlanbagy, Samer (Author) / Sweazea, Karen (Thesis advisor) / Johnston, Carol (Committee member) / Shepard, Christina (Committee member) / Lespron, Christy (Committee member) / Arizona State University (Publisher)
Created2014
Description
The omega-3 fatty acids in fatty fish and fish oil, eicosapentanoic acid (EPA) and docosahexanoic acid (DHA), have been associated with a reduction in risk for cardiovascular disease. Blood type is a known contributor to risk for cardiovascular events. This study evaluated the effect of fish oil supplements on cardiovascular

The omega-3 fatty acids in fatty fish and fish oil, eicosapentanoic acid (EPA) and docosahexanoic acid (DHA), have been associated with a reduction in risk for cardiovascular disease. Blood type is a known contributor to risk for cardiovascular events. This study evaluated the effect of fish oil supplements on cardiovascular risk markers in adults with blood types A or O. An 8-week parallel-arm, randomized, double-blind trial was conducted in healthy adult men and women with either blood type A (BTA) or blood type O (BTO). Participants were randomized to receive fish oil supplements (n=10 [3 BTA/7 BTO]; 2 g [containing 1.2 g EPA+DHA]/d) or a coconut oil supplement (n=7 [3 BTA/4 BTO]; 2 g/d). Markers that were examined included total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), high-sensitivity C-reactive protein (hsCRP), and hemoglobin A1C (HbA1C). Results indicated that the percent change in LDL cholesterol was significantly greater in the coconut oil group vs the fish oil group (-14.8±12.2% vs +2.8±18.9% respectively, p=0.048). There were no other significant differences between treatment groups, or between blood types A and O, for the other cardiovascular risk markers. Further research with a larger and more diverse sample may yield a more conclusive result.
ContributorsHerring, Dana (Author) / Johnston, Carol (Thesis advisor) / Vega-Lopez, Sonia (Committee member) / Shepard, Christina (Committee member) / Arizona State University (Publisher)
Created2014
152889-Thumbnail Image.png
Description
The unpleasant bitter taste found in many nutritious vegetables may deter their consumption. While bitterness suppression by prototypical tastants is well-studied in the chemical and pharmacological fields, mechanisms to reduce the bitterness of foods such as vegetables remain to be elucidated. Here tastants representing the taste primaries of

The unpleasant bitter taste found in many nutritious vegetables may deter their consumption. While bitterness suppression by prototypical tastants is well-studied in the chemical and pharmacological fields, mechanisms to reduce the bitterness of foods such as vegetables remain to be elucidated. Here tastants representing the taste primaries of salty and sweet were investigated as potential bitterness suppressors of three types of Brassicaceae vegetables. The secondary aim of these studies was to determine whether the bitter masking agents were differentially effective for bitter-sensitive and bitter-insensitive individuals. In all experiments, participants rated vegetables plain and with the addition of tastants. In Experiments 1-3, sucrose and NNS suppressed the bitterness of broccoli, Brussels sprouts, and cauliflower, whereas NaCl did not. Varying concentrations of NaCl and sucrose were introduced in Experiment 4 to assess the dose-dependency of the effects. While sucrose was a robust bitterness suppressor, NaCl suppressed bitterness only for participants who perceived the plain Brussels sprouts as highly bitter. Experiment 5, through the implementation of a rigorous control condition, determined that some but not all of this effect can be accounted for by regression to the mean. Individual variability in taste perception as determined by sampling of aqueous bitter, salty, and sweet solutions did not influence the degree of suppression by NaCl or sucrose. Consumption of vegetables is deterred by their bitter taste. Utilizing tastants to mask bitterness, a technique that preserves endogenous nutrients, can circumvent this issue. Sucrose is a robust bitter suppressor whereas the efficacy of NaCl is dependent upon bitterness perception of the plain vegetables.
ContributorsWilkie, Lynn Melissa (Author) / Capaldi Phillips, Elizabeth D (Thesis advisor) / Cohen, Adam (Committee member) / Johnston, Carol (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2014
153350-Thumbnail Image.png
Description
Long term high fat diets (HFD) are correlated with the development of diabetes

and kidney disease. However, the impact of short term high fat intake on the etiology of kidney disease has not been well-studied. Therefore, this study examined the impact of a six week HFD (60% fat) on kidney structure

Long term high fat diets (HFD) are correlated with the development of diabetes

and kidney disease. However, the impact of short term high fat intake on the etiology of kidney disease has not been well-studied. Therefore, this study examined the impact of a six week HFD (60% fat) on kidney structure and function in young male Sprague-Dawley rats. Previous studies have shown that these animals develop indices of diabetes compared to rats fed a standard rodent chow (5% fat) for six weeks. The hypothesis of this study is that six weeks of HFD will lead to early stages of kidney disease as evidenced by morphological and functional changes in the kidney. Alterations in morphology were determined by measuring structural changes in the kidneys (changes in mass, fatty acid infiltration, and structural damage). Alterations in kidney function were measured by analyzing urinary biomarkers of oxidative RNA/DNA damage, renal tissue lipid peroxidation, urinary markers of impaired kidney function (urinary protein, creatinine, and hydrogen peroxide (H2O2)), markers of inflammation (tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6)), as well as cystatin C, a plasma biomarker of kidney function. The results of these studies determined that short term HFD intake is not sufficient to induce early stage kidney disease. Beyond increases in renal mass, there were no significant differences between the markers of renal structure and function in the HFD and standard rodent chow-fed rats.
ContributorsCrinigan, Catherine (Author) / Sweazea, Karen (Thesis advisor) / Johnston, Carol (Committee member) / Mayol-Kreiser, Sandra (Committee member) / Arizona State University (Publisher)
Created2015
150900-Thumbnail Image.png
Description
Birds have plasma glucose levels that are 1.5-2 times greater than mammals of similar body mass in addition to higher free fatty acid concentrations, both of which would typically impair endothelium-dependent vasodilation if observed in mammals. Endothelium-dependent vasodilation can be stimulated in mammals through the use of acetylcholine (ACh), which

Birds have plasma glucose levels that are 1.5-2 times greater than mammals of similar body mass in addition to higher free fatty acid concentrations, both of which would typically impair endothelium-dependent vasodilation if observed in mammals. Endothelium-dependent vasodilation can be stimulated in mammals through the use of acetylcholine (ACh), which primarily acts through nitric oxide (NO) and cyclooxygenase (COX)-mediated pathways, with varying reliance on endothelial-derived hyperpolarizing factors (EDHFs). Very few studies have been conducted on small resistance systemic arteries from birds. The hypothesis was that because birds have naturally high glucose and free fatty acid concentrations, ACh-induced vasodilation of isolated arteries from mourning doves (Zenaida macroura) would be independent of endothelial-derived factors and resistant to high glucose-mediated vascular dysfunction. Small resistance mesenteric and cranial tibial (c. tibial) arteries were pre-constricted to 50% of resting inner diameter with phenyleprine then exposed to increasing doses of ACh (10-9 to 10-5 μM) or the NO donor, sodium nitroprusside (SNP; 10-12 to 10-3 μM). For both vessel beds, ACh-induced vasodilation occurred mainly through the activation of potassium channels, whereas vasodilation of mesenteric arteries additionally occurred through COX. Although arteries from both vessel beds fully dilated with exposure to sodium nitroprusside, ACh-mediated vasodilation was independent of NO. To examine the effect of high glucose on endothelium-dependent vasodilation, ACh dose response curves were conducted following exposure of isolated c. tibial arteries to either a control solution (20mM glucose) or high glucose (30mM). ACh-induced vasodilation was significantly impaired (p = 0.013) when exposed to high glucose, but normalized in subsequent vessels with pre-exposure to the superoxide dismutase mimetic tiron (10 mM). Superoxide concentrations were likewise significantly increased (p = 0.0072) following exposure to high glucose. These findings indicate that dove arteries do not appear to have endogenous mechanisms to counteract the deleterious effects of oxidative stress. Additional studies are required to assess whether endogenous mechanisms exist to protect avian vascular reactivity from systemic hyperglycemia.
ContributorsJarrett, Catherine Lee (Author) / Sweazea, Karen L (Thesis advisor) / Johnston, Carol (Committee member) / Gaesser, Glenn (Committee member) / Arizona State University (Publisher)
Created2012
151216-Thumbnail Image.png
Description
The unpleasant bitter taste found in many nutritious vegetables may deter people from consuming a healthy diet. We investigated individual differences in taste perception and whether these differences influence the effectiveness of bitterness masking. To test whether phenylthiocarbamide (PTC) `supertasters' also taste salt and sugar with greater intensity, as suggested

The unpleasant bitter taste found in many nutritious vegetables may deter people from consuming a healthy diet. We investigated individual differences in taste perception and whether these differences influence the effectiveness of bitterness masking. To test whether phenylthiocarbamide (PTC) `supertasters' also taste salt and sugar with greater intensity, as suggested by Bartoshuk and colleagues (2004), we infused strips of paper with salt water or sugar water. The bitterness rating of the PTC strip had a significant positive linear relationship with ratings of both the intensity of sweet and salt, but the effect sizes were very low, suggesting that the PTC strip does not give a complete picture of tasting ability. Next we investigated whether various seasonings could mask the bitter taste of vegetables and whether this varied with tasting ability. We found that sugar decreased bitterness and lemon decreased liking for vegetables of varying degrees of bitterness. The results did not differ by ability to taste any of the flavors. Therefore, even though there are remarkable individual differences in taste perception, sugar can be used to improve the initial palatability of vegetables and increase their acceptance and consumption.
ContributorsWilkie, Lynn Melissa (Author) / Phillips, Elizabeth D. (Thesis advisor) / Cohen, Adam (Committee member) / Johnston, Carol (Committee member) / Arizona State University (Publisher)
Created2012
156437-Thumbnail Image.png
Description
Epidemiological studies have identified obesity as a risk factor for numerous chronic diseases such as adult onset diabetes, hypertension, and hypercholesterolemia. In both humans and laboratory animals, high-fat diets have been shown to cause obesity. Increases in dietary fat lead to increased energy consumption and, consequently, significant increases in body

Epidemiological studies have identified obesity as a risk factor for numerous chronic diseases such as adult onset diabetes, hypertension, and hypercholesterolemia. In both humans and laboratory animals, high-fat diets have been shown to cause obesity. Increases in dietary fat lead to increased energy consumption and, consequently, significant increases in body fat content. CD36 has been implicated in fat perception, preference, and increased consumption, but it is yet to be tested using a behavior paradigm. To study the effect of CD36 on fat taste transmission and fat consumption, four CD36 knockout (experimental) mice and four Black 6 wildtype (control) mice underwent 20 days of fat preference and perception testing. Both groups of mice were exposed to foods with progressively increasing fat content (10%, 12.5%, 15% 17.5%, 20%, 45%) in order to assess the effect of CD36 on fat preference. Afterward, the mice were subjected to an aversive conditioning protocol designed to test the effect of CD36 on fat taste perception; development of a conditioned taste aversion was indicative of ability to taste fat. Especially, knockout mice exhibited diminished preference for and reduced consumption of fat during preference testing and were unable to identify fat taste as the conditioned stimulus during aversive conditioning. A repeated measures ANOVA with Bonferroni correction revealed a significant main effect of group on fat consumption, energy intake, and weight. Linear regression revealed CD36 status to account for a majority of observed variance in fat consumption across both phases of the experiment. These results implicate CD36 in fat taste perception and preference and add to the growing body of evidence suggesting fat as a primary taste.
ContributorsJasbi, Paniz (Author) / Johnston, Carol (Thesis advisor) / Lespron, Christy (Committee member) / Wadhera, Devina (Committee member) / Arizona State University (Publisher)
Created2018
137268-Thumbnail Image.png
Description
With obesity and metabolic diseases reaching epidemic levels, it is important to find ways to increase physical activity and improve diet. Previous studies have shown that improvements in mood can increase desire to perform physical activity, and that vitamin C intake is linked to improvements in mood. Based on this,

With obesity and metabolic diseases reaching epidemic levels, it is important to find ways to increase physical activity and improve diet. Previous studies have shown that improvements in mood can increase desire to perform physical activity, and that vitamin C intake is linked to improvements in mood. Based on this, two hypotheses were formed and tested to investigate the effect on physical activity levels and mood states from vitamin C supplementation at a dose of one gram per day in the form of a novel functional food. Thirty-one college students or faculty at Arizona State University were screened from a pool of applicants and placed into either a vitamin C or placebo group; all participants received the novel functional food to eat daily for four weeks. Serum levels of vitamin C, weight, height, BMI, body fat percentage, mood, and physical activity were measured before and after the functional food intervention. Vitamin C changed significantly through the course of the study in the experimental group. Baseline data for participants showed a positive correlation between vitamin C status and vigor, and a negative correlation between vitamin C status and weight and BMI. Physical activity was not related to vitamin C status, according to baseline data, and it did not significantly change over the course of the study. The results indicate that variance in BMI can be attributed to vitamin C status, but the study should be refined and tested again.
ContributorsHelland, Stephanie Lynn (Author) / Johnston, Carol (Thesis director) / Sweazea, Karen (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Graduate College (Contributor)
Created2014-05
Description
There are many studies on vitamin B6 (pyrodoxine) or tryptophan (Trp) as a way to increase mood but there are little to no studies with these two nutrients supplemented together. Trp is the precursor to serotonin that requires the cofactor pyridoxal phosphate (PLP). Serotonin plays a role in mood, sleep,

There are many studies on vitamin B6 (pyrodoxine) or tryptophan (Trp) as a way to increase mood but there are little to no studies with these two nutrients supplemented together. Trp is the precursor to serotonin that requires the cofactor pyridoxal phosphate (PLP). Serotonin plays a role in mood, sleep, appetite, and other wellbeing aspects and it is believed that low levels of serotonin is associated with the risk of developing depression, anxiety, and bipolar disorders. The amount of free Trp that can pass the blood-brain barrier (BBB) is influenced by factors such as cortisol, insulin, and competition from branch chain amino acids (BCAA). College students who exercise on a regular basis and participate in club sports may experience higher cortisol levels from stress of college and higher physical activity. Cortisol decreases the Trp levels in the plasma while BCAAs compete with Trp to pass through the BBB. Insulin promotes the passage of free Trp through the BBB. In the present study, 28 healthy active college students (21.0 ± 2.1 years, 24.5± 3.1 kg/m2) were divided into three groups: vitamin B6 (n=11), Trp (n=10), or both (n=10) (2 did not complete study). Blood serum pyridoxine levels and mood states were measured at baseline and at 4 weeks with Profile of Mood States (POMS), Depression Anxiety Stress Survey (DASS), Life Orientation Test-Revised (LOT-R), and Epworth sleep scale. In the combined sample, the total POMS score improved during the study (p=0.039) and the total DASS score tended to improve during the study (p=0.068). Thus, mean depression scores for all participants decreased during the 4-week supplementation study. However, there were no time x treatment effects noted at study completion. At baseline 18% of the participants were marginally deficient in vitamin B6 (serum pyridoxine <30nmol/L), and their total POMS score was raised 78% in comparison to participants with adequate vitamin B6 status (p=0.08). DASS scores were raised 48% in vitamin B6 deficient participants versus those with adequate vitamin B6 status (p=0.243). There were no significant changes (time or time x treatment) during the course of the study for the LOT-R or sleep scores. In summary, vitamin B6 deficiency in college student athletes was remarkably high (18%) compared to the national average reported by the CDC in 2012 (10.5%), and participants with vitamin B6 deficiency displayed heightened unfavorable mood states. Moreover, supplementation with vitamin B6, tryptophan, or vitamin B6 and tryptophan improved mood state in college student athletes, but there were no differences between treatments.
ContributorsNaumann, Adelaide (Author) / Johnston, Carol (Thesis director) / Levinson, Simin (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148324-Thumbnail Image.png
Description

The various health benefits of vinegar ingestion have been studied extensively in the<br/>literature. Moreover, emerging research suggests vinegar may also have an effect on mental<br/>health. Beneficial effects of certain diets on mood have been reported, however, the mechanisms<br/>are unknown. The current study aimed to determine if vinegar ingestion positively affects

The various health benefits of vinegar ingestion have been studied extensively in the<br/>literature. Moreover, emerging research suggests vinegar may also have an effect on mental<br/>health. Beneficial effects of certain diets on mood have been reported, however, the mechanisms<br/>are unknown. The current study aimed to determine if vinegar ingestion positively affects mood<br/>state in healthy young adults. This was a randomized, single blinded controlled trial consisting of<br/>25 subjects. Participants were randomly assigned to either the vinegar group (consumed 2<br/>tablespoons of liquid vinegar diluted in one cup water twice daily with meals) or the control<br/>group (consumed one vinegar pill daily with a meal), and the intervention lasted 4 weeks.<br/>Subjects completed mood questionnaires pre- and post-intervention. Results showed a significant<br/>improvement in CES-D and POMS-Depression scores for the vinegar group compared to the<br/>control. This study suggests that vinegar ingestion may improve depressive symptoms in healthy<br/>young adults.

ContributorsWilliams, Susanna (Author) / Johnston, Carol (Thesis director) / Whisner, Corrie (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05