Matching Items (6)
Filtering by

Clear all filters

133632-Thumbnail Image.png
Description
Galaxies in the universe are surrounded by a hot medium called the Circum-Galactic Medium (CGM). Present the CGM is gas that forms up clouds which travel within the CGM at speeds that approximately range between 100 km/s and 300 km/s. These gas clouds are very interesting because they play a

Galaxies in the universe are surrounded by a hot medium called the Circum-Galactic Medium (CGM). Present the CGM is gas that forms up clouds which travel within the CGM at speeds that approximately range between 100 km/s and 300 km/s. These gas clouds are very interesting because they play a crucial in the formation of stars within the galaxies and also in the overall evolution of galaxies. The clouds could in fact be thought of as mobile "gas stations" whose sole purpose is facilitate the ionization of elements and ultimately supply gas to galaxies. My thesis project is a follow-up study on CGM gas cloud observations that were made by Borthakur et. al. (2016). Using Cosmic Origins Spectrograph (COS) data from the Hubble Space Telescope (HST), Borthakur et. al. (2016) observed the presence of both Carbon IV (C IV) and Oxygen VI (O IV) but did not observe any Nitrogen V (N V) in the gas cloud when expected to be observable. Therefore, the ultimate goal of my research was to determine whether indeed CGM gas clouds have an actual shortage of the N V ion. My research involves the generation of cosmological simulations of a cold gas cloud that has a radius of 98 parsecs, relative velocity of 200 km/s, density range of 10-3 to -5 and a temperature in the range of ~104 to 5 K, and also a hot CGM that has density in the range of 10-4.5 to -6 particles/cm3 and temperature of approximately 106 K. Traces of N v are observed in my simulations.
ContributorsSaboi, Kezman (Author) / Scannapieco, Evan (Thesis director) / Borthakur, Sanchayeeta (Committee member) / Cottle, JNeil (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
132980-Thumbnail Image.png
Description
Lactase persistence is the ability of adults to digest lactose in milk (Segurel & Bon, 2017). Mammals are generally distinguished by their mammary glands which gives females the ability to produce milk and feed their newborn children. The new born therefore requires the ability to breakdown the lactose in the

Lactase persistence is the ability of adults to digest lactose in milk (Segurel & Bon, 2017). Mammals are generally distinguished by their mammary glands which gives females the ability to produce milk and feed their newborn children. The new born therefore requires the ability to breakdown the lactose in the milk to ensure its proper digestion (Segurel & Bon, 2017). Generally, humans lose the expression of lactase after weaning, which prevents them being able to breakdown lactose from dairy (Flatz, 1987).
My research is focused on the people of Turkana, a human pastoral population inhabiting Northwest Kenya. The people of Turkana are Nilotic people that are native to the Turkana district. There are currently no conclusive studies done on evidence for genetic lactase persistence in Turkana. Therefore, my research will be on the evolution of lactase persistence in the people of Turkana. The goal of this project is to investigate the evolutionary history of two genes with known involvement in lactase persistence, LCT and MCM6, in the Turkana. Variants in these genes have previously been identified to result in the ability to digest lactose post-weaning age. Furthermore, an additional study found that a closely related population to the Turkana, the Massai, showed stronger signals of recent selection for lactase persistence than Europeans in these genes. My goal is to characterize known variants associated with lactase persistence by calculating their allele frequencies in the Turkana and conduct selection scans to determine if LCT/MCM6 show signatures of positive selection. In doing this, we conducted a pilot study consisting of 10 female Turkana individuals and 10 females from four different populations from the 1000 genomes project namely: the Yoruba in Ibadan, Nigeria (YRI); Luhya in Webuye, Kenya; Utah Residents with Northern and Western European Ancestry (CEU); and the Southern Han Chinese. The allele frequency calculation suggested that the CEU (Utah Residents with Northern and Western European Ancestry) population had a higher lactase persistence associated allele frequency than all the other populations analyzed here, including the Turkana population. Our Tajima’s D calculations and analysis suggested that both the Turkana population and the four haplotype map populations shows signatures of positive selection in the same region. The iHS selection scans we conducted to detect signatures of positive selection on all five populations showed that the Southern Han Chinese (CHS), the LWK (Luhya in Webuye, Kenya) and the YRI (Yoruba in Ibadan, Nigeria) populations had stronger signatures of positive selection than the Turkana population. The LWK (Luhya in Webuye, Kenya) and the YRI (Yoruba in Ibadan, Nigeria) populations showed the strongest signatures of positive selection in this region. This project serves as a first step in the investigation of lactase persistence in the Turkana population and its evolution over time.
ContributorsJobe, Ndey Bassin (Author) / Wilson Sayres, Melissa (Thesis director) / Paaijmans, Krijn (Committee member) / Taravella, Angela (Committee member) / School of Earth and Space Exploration (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
148089-Thumbnail Image.png
Description

In this study, the influence of fluid mixing on temperature and geochemistry of hot spring fluids is investigated. Yellowstone National Park (YNP) is home to a diverse range of hot springs with varying temperature and chemistry. The mixing zone of interest in this paper, located in Geyser Creek, YNP, has

In this study, the influence of fluid mixing on temperature and geochemistry of hot spring fluids is investigated. Yellowstone National Park (YNP) is home to a diverse range of hot springs with varying temperature and chemistry. The mixing zone of interest in this paper, located in Geyser Creek, YNP, has been a point of interest since at least the 1960’s (Raymahashay, 1968). Two springs, one basic (~pH 7) and one acidic (~pH 3) mix together down an outflow channel. There are visual bands of different photosynthetic pigments which suggests the creation of temperature and chemical gradients due to the fluids mixing. In this study, to determine if fluid mixing is driving these changes of temperature and chemistry in the system, a model that factors in evaporation and cooling was developed and compared to measured temperature and chemical data collected downstream. Comparison of the modeled temperature and chemistry to the measured values at the downstream mixture shows that many of the ions, such as Cl⁻, F⁻, and Li⁺, behave conservatively with respect to mixing. This indicates that the influence of mixing accounts for a large proportion of variation in the chemical composition of the system. However, there are some chemical constituents like CH₄, H₂, and NO₃⁻, that were not conserved, and the concentrations were either depleted or increased in the downstream mixture. Some of these constituents are known to be used by microorganisms. The development of this mixing model can be used as a tool for predicting biological activity as well as building the framework for future geochemical and computational models that can be used to understand the energy availability and the microbial communities that are present.

ContributorsOrrill, Brianna Isabel (Author) / Shock, Everett (Thesis director) / Howells, Alta (Committee member) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148230-Thumbnail Image.png
Description

Stellar mass loss has a high impact on the overall evolution of a star. The amount<br/>of mass lost during a star’s lifetime dictates which remnant will be left behind and how<br/>the circumstellar environment will be affected. Several rates of mass loss have been<br/>proposed for use in stellar evolution codes, yielding

Stellar mass loss has a high impact on the overall evolution of a star. The amount<br/>of mass lost during a star’s lifetime dictates which remnant will be left behind and how<br/>the circumstellar environment will be affected. Several rates of mass loss have been<br/>proposed for use in stellar evolution codes, yielding discrepant results from codes using<br/>different rates. In this paper, I compare the effect of varying the mass loss rate in the<br/>stellar evolution code TYCHO on the initial-final mass relation. I computed four sets of<br/>models with varying mass loss rates and metallicities. Due to a large number of models<br/>reaching the luminous blue variable stage, only the two lower metallicity groups were<br/>considered. Their mass loss was analyzed using Python. Luminosity, temperature, and<br/>radius were also compared. The initial-final mass relation plots showed that in the 1/10<br/>solar metallicity case, reducing the mass loss rate tended to increase the dependence of final mass on initial mass. The limited nature of these results implies a need for further study into the effects of using different mass loss rates in the code TYCHO.

ContributorsAuchterlonie, Lauren (Author) / Young, Patrick (Thesis director) / Shkolnik, Evgenya (Committee member) / Starrfield, Sumner (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

During the Dawn mission, bright spots were discovered on the surface of the dwarf planet Ceres, which were determined to be evaporite deposits of sodium carbonate, ammonium carbonate, and hydrohalite. These deposits are significant because they indicate the presence of subsurface water and potential geologic activity on Ceres. These evaporites

During the Dawn mission, bright spots were discovered on the surface of the dwarf planet Ceres, which were determined to be evaporite deposits of sodium carbonate, ammonium carbonate, and hydrohalite. These deposits are significant because they indicate the presence of subsurface water and potential geologic activity on Ceres. These evaporites form from the brine-water mixture in the deep Ceres reservoir, which likely possesses the conditions ideal for forming complex organics. Here, we report the results of a suite of laboratory techniques (CHN Elemental Analyzer, Secondary Ion Mass Spectrometry, Fourier-Transform Infrared Spectroscopy, Gas Chromatography, and Brunauer-Emmett-Teller Analysis) for quantifying the likelihood of primordial carbon survival and distribution in analog materials found on Ceres, particularly in salt evaporates. We are specifically looking at if the amino acid glycine can be preserved in sodium chloride crystals. Our results conclude that if the Ceres brine reservoir is saturated with organics, and with the lower limits that we have for our instrumentation thus far, these techniques should be more than sufficient to measure glycine content should we ever receive samples from Ceres.

ContributorsReynoso, Lucas (Author) / Bose, Maitrayee (Thesis director) / Castillo-Rogez, Julie (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Earth and Space Exploration (Contributor)
Created2023-05
165679-Thumbnail Image.png
Description
The Greater Obsidian Pool Area just south of the Mud Volcano area in Yellowstone National Park is an active and ever-changing hot spring region. Situated next to a lake in a meadow between several hills of glacial deposits, north of the Elephant Back rhyolite flow, a diverse group of hot

The Greater Obsidian Pool Area just south of the Mud Volcano area in Yellowstone National Park is an active and ever-changing hot spring region. Situated next to a lake in a meadow between several hills of glacial deposits, north of the Elephant Back rhyolite flow, a diverse group of hot springs has been developing. This study examines the geologic and geomorphic context of the hot springs, finding evidence for a previously undiscovered hydrothermal explosion crater and examining the deposits around the region that contribute to properties of the groundwater table. Hot spring geochemical measurements (Cl- and SO4-2) taken over the course of 20 years are used to determine fluid sourcing of the springs. The distribution of Cl-, an indicator of water-rock interaction, in the hot springs leads to the theory of a fissure delivering hydrothermal fluid in a line across the hot spring zone, with meteoric water from incoming groundwater diluting hot springs moving further from the fissure. A possible second dry fissure delivering mostly gas is also a possible explanation for some elevated sulfate concentrations in certain springs. The combination of geology, geomorphology, and geochemistry reveals how the surface and subsurface operate to generate different hot spring compositions.
ContributorsAlexander, Erin (Author) / Shock, Everett (Thesis director) / Whipple, Kelin (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05