Matching Items (7)
Filtering by

Clear all filters

151094-Thumbnail Image.png
Description
Environmental agencies often want to accomplish additional objectives beyond their central environmental protection objective. This is laudable; however it begets a need for understanding the additional challenges and trade-offs involved in doing so. The goal of this thesis is to examine the trade-offs involved in two such cases that have

Environmental agencies often want to accomplish additional objectives beyond their central environmental protection objective. This is laudable; however it begets a need for understanding the additional challenges and trade-offs involved in doing so. The goal of this thesis is to examine the trade-offs involved in two such cases that have received considerable attention recently. The two cases I examine are (1) the protection of multiple environmental goods (e.g., bundles of ecosystem services); and (2) the use of payments for ecosystem services as a poverty reduction mechanism. In the first case (chapter 2), I build a model based on the fact that efforts to protect one environmental good often increase or decrease the levels of other environmental goods, what I refer to as "cobenefits" and "disbenefits" respectively. There is often a desire to increase the cobenefits of environmental protection efforts in order to synergize across conservation efforts; and there is also a desire to decrease disbenefits because they are seen as negative externalities of protection efforts. I show that as a result of reciprocal externalities between environmental protection efforts, environmental agencies likely have a disincentive to create cobenefits, but may actually have an incentive to decrease disbenefits. In the second case (chapter 3), I model an environmental agency that wants to increase environmental protection, but would also like to reduce poverty. The model indicates that in theory, the trade-offs between these two goals may depend on relevant parameters of the system, particularly the ratio of the price of monitoring to participant's compliance cost. I show that when the ratio of monitoring costs to compliance cost is higher, trade-offs between environmental protection and poverty reduction are likely to be smaller. And when the ratio of monitoring costs to compliance costs is lower, trade-offs are likely to be larger. This thesis contributes to a deeper understanding of the trade-offs faced by environmental agencies that want to pursue secondary objectives of protecting additional environmental goods or reducing poverty.
ContributorsGilliland, Ted (Author) / Perrings, Charles (Thesis advisor) / Abbott, Josh K (Committee member) / Kinzig, Ann P (Committee member) / Arizona State University (Publisher)
Created2012
156451-Thumbnail Image.png
Description
Avian influenzas are zoonoses, or pathogens borne by wildlife and livestock that

can also infect people. In recent decades, and especially since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in 1996, these diseases have become a significant threat to animal and public health across the world. HPAI H5N1 has

Avian influenzas are zoonoses, or pathogens borne by wildlife and livestock that

can also infect people. In recent decades, and especially since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in 1996, these diseases have become a significant threat to animal and public health across the world. HPAI H5N1 has caused severe damage to poultry populations, killing, or prompting the culling of, millions of birds in Asia, Africa, and Europe. It has also infected hundreds of people, with a mortality rate of approximately 50%. This dissertation focuses on the ecological and socioeconomic drivers of avian influenza risk, particularly in China, the most populous country to be infected. Among the most significant ecological risk factors are landscapes that serve as “mixing zones” for wild waterfowl and poultry, such as rice paddy, and nearby lakes and wetlands that are important breeding and wintering habitats for wild birds. Poultry outbreaks often involve cross infections between wild and domesticated birds. At the international level, trade in live poultry can spread the disease, especially if the imports are from countries not party to trade agreements with well-developed biosecurity standards. However, these risks can be mitigated in a number of ways. Protected habitats, such as Ramsar wetlands, can segregate wild bird and poultry populations, thereby lowering the chance of interspecies transmission. The industrialization of poultry production, while not without ethical and public health problems, can also be risk-reducing by causing wild-domestic segregation and allowing for the more efficient application of surveillance, vaccination, and other biosecurity measures. Disease surveillance is effective at preventing the spread of avian influenza, including across international borders. Economic modernization in general, as reflected in rising per-capita GDP, appears to mitigate avian influenza risks at both the national and sub-national levels. Poultry vaccination has been effective in many cases, but is an incomplete solution because of the practical difficulties of sustained and widespread implementation. The other popular approach to avian influenza control is culling, which can be highly expensive and raise ethical concerns about large-scale animal slaughter. Therefore, it is more economically efficient, and may even be more ethical, to target the socio-ecological drivers of avian influenza risks, including by implementing the policies discussed here.
ContributorsWu, Tong (Author) / Perrings, Charles (Thesis advisor) / Collins, Jim (Committee member) / Daszak, Peter (Committee member) / Minteer, Ben (Committee member) / Kinzig, Ann (Committee member) / Arizona State University (Publisher)
Created2018
155212-Thumbnail Image.png
Description
The spread of dengue worldwide currently places half of the world’s population at risk. In the absence of a dengue vaccine, control of the disease requires control of the mosquito species that transmit the virus. The most important of these is. Advances in research detailing the responsiveness of Aedes aegypti

The spread of dengue worldwide currently places half of the world’s population at risk. In the absence of a dengue vaccine, control of the disease requires control of the mosquito species that transmit the virus. The most important of these is. Advances in research detailing the responsiveness of Aedes aegypti to small changes in climate enable the production of more sophisticated remote sensing and surveillance techniques for monitoring these populations. Close monitoring of global dengue activity and outbreaks likewise enables a greater specificity when determining to which human populations the virus is most likely to spread. There have been no locally acquired cases in Arizona to date, but the high abundance of Aedes aegypti in the Phoenix Metropolitan area raises concern within the Arizona Department of Health Services over the potential transmission of dengue in the city. This study develops a model that combines mosquito abundance, micro-climatic and demographic information to delineate regions in Phoenix that are most support transmission of dengue. The first chapter focuses on the impact that daytime high and low temperatures have on Aedes aegypti’s ability to become infectious with dengue. It argues that NDVI (normal difference vegetative index) imaging of the Phoenix area can be used to plot areas where mosquitoes are most likely to become competent vectors. The second chapter focuses on the areas in the city where mosquitoes are most likely to be exposed to the virus. Based on proximity to Phoenix and the high volume of traffic across the Arizona-Mexico border, I treat the Mexican state of Sonora as the source of infection. I combine these two analyses, micro-climatic and demographic, to produce maps of Phoenix that show the locations with the highest likelihood of transmission overall.
ContributorsHughes, Tyler (Author) / Perrings, Charles (Thesis advisor) / Kinzig, Ann (Committee member) / Hall, Sharon J (Committee member) / Arizona State University (Publisher)
Created2016
149127-Thumbnail Image.png
Description

This brief article, written for a symposium on "Collaboration and the Colorado River," evaluates the U.S. Department of the Interior's Glen Canyon Dam Adaptive Management Program ("AMP"). The AMP has been advanced as a pioneering collaborative and adaptive approach for both decreasing scientific uncertainty in support of regulatory decision-making and

This brief article, written for a symposium on "Collaboration and the Colorado River," evaluates the U.S. Department of the Interior's Glen Canyon Dam Adaptive Management Program ("AMP"). The AMP has been advanced as a pioneering collaborative and adaptive approach for both decreasing scientific uncertainty in support of regulatory decision-making and helping manage contentious resource disputes -- in this case, the increasingly thorny conflict over the Colorado River's finite natural resources. Though encouraging in some respects, the AMP serves as a valuable illustration of the flaws of existing regulatory processes purporting to incorporate collaboration and regulatory adaptation into the decision-making process. Born in the shadow of the law and improvised with too little thought as to its structure, the AMP demonstrates the need to attend to the design of the regulatory process and integrate mechanisms that compel systematic program evaluation and adaptation. As such, the AMP provides vital information on how future collaborative experiments might be modified to enhance their prospects of success.

ContributorsCamacho, Alejandro E. (Author)
Created2008-09-19
135868-Thumbnail Image.png
Description
This work examines one dimension of the effect that complex human transport systems have on the spread of Chikungunya Virus (CHIKV) in the Caribbean from 2013 to 2015. CHIKV is transmitted by mosquitos and its novel spread through the Caribbean islands provided a chance to examine disease transmission through complex

This work examines one dimension of the effect that complex human transport systems have on the spread of Chikungunya Virus (CHIKV) in the Caribbean from 2013 to 2015. CHIKV is transmitted by mosquitos and its novel spread through the Caribbean islands provided a chance to examine disease transmission through complex human transportation systems. Previous work by Cauchemez et al. had shown a simple distance-based model successfully predict CHIKV spread in the Caribbean using Markov chain Monte Carlo (MCMC) statistical methods. A MCMC simulation is used to evaluate different transportation methods (air travel, cruise ships, and local maritime traffic) for the primary transmission patterns through linear regression. Other metrics including population density to account for island size variation and dengue fever incidence rates as a proxy for vector control and health spending were included. Air travel and cruise travel were gathered from monthly passenger arrivals by island. Local maritime traffic is approximated with a gravity model proxy incorporating GDP-per-capita and distance and historic dengue rates were used for determine existing vector control measures for the islands. The Caribbean represents the largest cruise passenger market in the world, cruise ship arrivals were expected to show the strongest signal; however, the gravity model representing local traffic was the best predictor of infection routes. The early infected islands (<30 days) showed a heavy trend towards an alternate primary transmission but our consensus model able to predict the time until initial infection reporting with 94.5% accuracy for islands 30 days post initial reporting. This result can assist public health entities in enacting measures to mitigate future epidemics and provide a modelling basis for determining transmission modes in future CHIKV outbreaks.
ContributorsFries, Brendan F (Author) / Perrings, Charles (Thesis director) / Wilson Sayres, Melissa (Committee member) / Morin, Ben (Committee member) / School of Life Sciences (Contributor) / Department of Military Science (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
149142-Thumbnail Image.png
Description

The Glen Canyon Dam Adaptive Management Program (AMP) has been identified as a model for natural resource management. We challenge that assertion, citing the lack of progress toward a long-term management plan for the dam, sustained extra-programmatic conflict, and a downriver ecology that is still in jeopardy, despite over ten

The Glen Canyon Dam Adaptive Management Program (AMP) has been identified as a model for natural resource management. We challenge that assertion, citing the lack of progress toward a long-term management plan for the dam, sustained extra-programmatic conflict, and a downriver ecology that is still in jeopardy, despite over ten years of meetings and an expensive research program. We have examined the primary and secondary sources available on the AMP’s design and operation in light of best practices identified in the literature on adaptive management and collaborative decision-making. We have identified six shortcomings: (1) an inadequate approach to identifying stakeholders; (2) a failure to provide clear goals and involve stakeholders in establishing the operating procedures that guide the collaborative process; (3) inappropriate use of professional neutrals and a failure to cultivate consensus; (4) a failure to establish and follow clear joint fact-finding procedures; (5) a failure to produce functional written agreements; and (6) a failure to manage the AMP adaptively and cultivate long-term problem-solving capacity.

Adaptive management can be an effective approach for addressing complex ecosystem-related processes like the operation of the Glen Canyon Dam, particularly in the face of substantial complexity, uncertainty, and political contentiousness. However, the Glen Canyon Dam AMP shows that a stated commitment to collaboration and adaptive management is insufficient. Effective management of natural resources can only be realized through careful attention to the collaborative design and implementation of appropriate problem-solving and adaptive-management procedures. It also requires the development of an appropriate organizational infrastructure that promotes stakeholder dialogue and agency learning. Though the experimental Glen Canyon Dam AMP is far from a success of collaborative adaptive management, the lessons from its shortcomings can foster more effective collaborative adaptive management in the future by Congress, federal agencies, and local and state authorities.

ContributorsSusskind, Lawrence (Author) / Camacho, Alejandro E. (Author) / Schenk, Todd (Author)
Created2010-03-23
158572-Thumbnail Image.png
Description
Land-use change has arguably been the largest contributor to the emergence of novel zoonotic diseases within the past century. However, the relationship between patterns of land-use change and the resulting landscape configuration on disease spread is poorly understood as current cross-species disease transmission models have not adequately incorporated spatial features

Land-use change has arguably been the largest contributor to the emergence of novel zoonotic diseases within the past century. However, the relationship between patterns of land-use change and the resulting landscape configuration on disease spread is poorly understood as current cross-species disease transmission models have not adequately incorporated spatial features of habitats. Furthermore, mathematical-epidemiological studies have not considered the role that land-use change plays in disease transmission throughout an ecosystem.

This dissertation models how a landscape's configuration, examining the amount and shape of habitat overlap, contributes to cross-species disease transmission to determine the role that land-use change has on the spread of infectious diseases. To approach this, an epidemiological model of transmission between a domesticated and a wild species is constructed. Each species is homogeneously mixed in its respective habitat and heterogeneously mixed in the habitat overlap, where cross-species transmission occurs. Habitat overlap is modeled using landscape ecology metrics.

This general framework is then applied to brucellosis transmission between elk and cattle in the Greater Yellowstone Ecosystem. The application of the general framework allows for the exploration of how land-use change has contributed to brucellosis prevalence in these two species, and how land management can be utilized to control disease transmission. This model is then extended to include a third species, bison, in order to provide insight to the indirect consequences of disease transmission for a species that is situated on land that has not been converted. The results of this study can ultimately help stakeholders develop policy for controlling brucellosis transmission between livestock, elk, and bison, and in turn, could lead to less disease prevalence, reduce associated costs, and assist in population management.

This research contributes novelty by combining landscape ecology metrics with theoretical epidemiological models to understand how the shape, size, and distribution of habitat fragments on a landscape affect cross-species disease transmission. The general framework demonstrates how habitat edge in single patch impacts cross-species disease transmission. The application to brucellosis transmission in the Greater Yellowstone Ecosystem between elk, cattle, and bison is original research that enhances understanding of how land conversion is associated with enzootic disease spread.
ContributorsPadilla, Dustin (Author) / Perrings, Charles (Thesis advisor) / Brauer, Fred (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2020