Matching Items (12)
Filtering by

Clear all filters

152411-Thumbnail Image.png
Description
Mathematical modeling of infectious diseases can help public health officials to make decisions related to the mitigation of epidemic outbreaks. However, over or under estimations of the morbidity of any infectious disease can be problematic. Therefore, public health officials can always make use of better models to study the potential

Mathematical modeling of infectious diseases can help public health officials to make decisions related to the mitigation of epidemic outbreaks. However, over or under estimations of the morbidity of any infectious disease can be problematic. Therefore, public health officials can always make use of better models to study the potential implication of their decisions and strategies prior to their implementation. Previous work focuses on the mechanisms underlying the different epidemic waves observed in Mexico during the novel swine origin influenza H1N1 pandemic of 2009 and showed extensions of classical models in epidemiology by adding temporal variations in different parameters that are likely to change during the time course of an epidemic, such as, the influence of media, social distancing, school closures, and how vaccination policies may affect different aspects of the dynamics of an epidemic. This current work further examines the influence of different factors considering the randomness of events by adding stochastic processes to meta-population models. I present three different approaches to compare different stochastic methods by considering discrete and continuous time. For the continuous time stochastic modeling approach I consider the continuous-time Markov chain process using forward Kolmogorov equations, for the discrete time stochastic modeling I consider stochastic differential equations using Wiener's increment and Poisson point increments, and also I consider the discrete-time Markov chain process. These first two stochastic modeling approaches will be presented in a one city and two city epidemic models using, as a base, our deterministic model. The last one will be discussed briefly on a one city SIS and SIR-type model.
ContributorsCruz-Aponte, Maytee (Author) / Wirkus, Stephen A. (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Camacho, Erika T. (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2014
152694-Thumbnail Image.png
Description
In the field of infectious disease epidemiology, the assessment of model robustness outcomes plays a significant role in the identification, reformulation, and evaluation of preparedness strategies aimed at limiting the impact of catastrophic events (pandemics or the deliberate release of biological agents) or used in the management of disease prevention

In the field of infectious disease epidemiology, the assessment of model robustness outcomes plays a significant role in the identification, reformulation, and evaluation of preparedness strategies aimed at limiting the impact of catastrophic events (pandemics or the deliberate release of biological agents) or used in the management of disease prevention strategies, or employed in the identification and evaluation of control or mitigation measures. The research work in this dissertation focuses on: The comparison and assessment of the role of exponentially distributed waiting times versus the use of generalized non-exponential parametric distributed waiting times of infectious periods on the quantitative and qualitative outcomes generated by Susceptible-Infectious-Removed (SIR) models. Specifically, Gamma distributed infectious periods are considered in the three research projects developed following the applications found in (Bailey 1964, Anderson 1980, Wearing 2005, Feng 2007, Feng 2007, Yan 2008, lloyd 2009, Vergu 2010). i) The first project focuses on the influence of input model parameters, such as the transmission rate, mean and variance of Gamma distributed infectious periods, on disease prevalence, the peak epidemic size and its timing, final epidemic size, epidemic duration and basic reproduction number. Global uncertainty and sensitivity analyses are carried out using a deterministic Susceptible-Infectious-Recovered (SIR) model. The quantitative effect and qualitative relation between input model parameters and outcome variables are established using Latin Hypercube Sampling (LHS) and Partial rank correlation coefficient (PRCC) and Spearman rank correlation coefficient (RCC) sensitivity indices. We learnt that: For relatively low (R0 close to one) to high (mean of R0 equals 15) transmissibility, the variance of the Gamma distribution for the infectious period, input parameter of the deterministic age-of-infection SIR model, is key (statistically significant) on the predictability of the epidemiological variables such as the epidemic duration and the peak size and timing of the prevalence of infectious individuals and therefore, for the predictability these variables, it is preferable to utilize a nonlinear system of Volterra integral equations, rather than a nonlinear system of ordinary differential equations. The predictability of epidemiological variables such as the final epidemic size and the basic reproduction number are unaffected by (or independent of) the variance of the Gamma distribution for the infectious period and therefore for the choice on which type of nonlinear system for the description of the SIR model (VIE's or ODE's) is irrelevant. Although, for practical proposes, with the aim of lowering the complexity and number operations in the numerical methods, a nonlinear system of ordinary differential equations is preferred. The main contribution lies in the development of a model based decision-tool that helps determine when SIR models given in terms of Volterra integral equations are equivalent or better suited than SIR models that only consider exponentially distributed infectious periods. ii) The second project addresses the question of whether or not there is sufficient evidence to conclude that two empirical distributions for a single epidemiological outcome, one generated using a stochastic SIR model under exponentially distributed infectious periods and the other under the non-exponentially distributed infectious period, are statistically dissimilar. The stochastic formulations are modeled via a continuous time Markov chain model. The statistical hypothesis test is conducted using the non-parametric Kolmogorov-Smirnov test. We found evidence that shows that for low to moderate transmissibility, all empirical distribution pairs (generated from exponential and non-exponential distributions) for each of the epidemiological quantities considered are statistically dissimilar. The research in this project helps determine whether the weakening exponential distribution assumption must be considered in the estimation of probability of events defined from the empirical distribution of specific random variables. iii) The third project involves the assessment of the effect of exponentially distributed infectious periods on estimates of input parameter and the associated outcome variable predictions. Quantities unaffected by the use of exponentially distributed infectious period within low transmissibility scenarios include, the prevalence peak time, final epidemic size, epidemic duration and basic reproduction number and for high transmissibility scenarios only the prevalence peak time and final epidemic size. An application designed to determine from incidence data whether there is sufficient statistical evidence to conclude that the infectious period distribution should not be modeled by an exponential distribution is developed. A method for estimating explicitly specified non-exponential parametric probability density functions for the infectious period from epidemiological data is developed. The methodologies presented in this dissertation may be applicable to models where waiting times are used to model transitions between stages, a process that is common in the study of life-history dynamics of many ecological systems.
ContributorsMorales Butler, Emmanuel J (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Aparicio, Juan P (Thesis advisor) / Camacho, Erika T (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2014
152574-Thumbnail Image.png
Description
Extraordinary medical advances have led to significant reductions in the burden of infectious diseases in humans. However, infectious diseases still account for more than 13 million annual deaths. This large burden is partly due to some pathogens having found suitable conditions to emerge and spread in denser and more connected

Extraordinary medical advances have led to significant reductions in the burden of infectious diseases in humans. However, infectious diseases still account for more than 13 million annual deaths. This large burden is partly due to some pathogens having found suitable conditions to emerge and spread in denser and more connected host populations, and others having evolved to escape the pressures imposed by the rampant use of antimicrobials. It is then critical to improve our understanding of how diseases spread in these modern landscapes, characterized by new host population structures and socio-economic environments, as well as containment measures such as the deployment of drugs. Thus, the motivation of this dissertation is two-fold. First, we study, using both data-driven and modeling approaches, the the spread of infectious diseases in urban areas. As a case study, we use confirmed-cases data on sexually transmitted diseases (STDs) in the United States to assess the conduciveness of population size of urban areas and their socio-economic characteristics as predictors of STD incidence. We find that the scaling of STD incidence in cities is superlinear, and that the percent of African-Americans residing in cities largely determines these statistical patterns. Since disparities in access to health care are often exacerbated in urban areas, within this project we also develop two modeling frameworks to study the effect of health care disparities on epidemic outcomes. Discrepant results between the two approaches indicate that knowledge of the shape of the recovery period distribution, not just its mean and variance, is key for assessing the epidemiological impact of inequalities. The second project proposes to study, from a modeling perspective, the spread of drug resistance in human populations featuring vital dynamics, stochasticity and contact structure. We derive effective treatment regimes that minimize both the overall disease burden and the spread of resistance. Additionally, targeted treatment in structured host populations may lead to higher levels of drug resistance, and if drug-resistant strains are compensated, they can spread widely even when the wild-type strain is below its epidemic threshold.
ContributorsPatterson-Lomba, Oscar (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Towers, Sherry (Thesis advisor) / Chowell-Puente, Gerardo (Committee member) / Arizona State University (Publisher)
Created2014
150387-Thumbnail Image.png
Description
The concept of vaccination dates back further than Edward Jenner's first vaccine using cowpox pustules to confer immunity against smallpox in 1796. Nevertheless, it was Jenner's success that gave vaccines their name and made vaccinia virus (VACV) of particular interest. More than 200 years later there is still the need

The concept of vaccination dates back further than Edward Jenner's first vaccine using cowpox pustules to confer immunity against smallpox in 1796. Nevertheless, it was Jenner's success that gave vaccines their name and made vaccinia virus (VACV) of particular interest. More than 200 years later there is still the need to understand vaccination from vaccine design to prediction of vaccine efficacy using mathematical models. Post-exposure vaccination with VACV has been suggested to be effective if administered within four days of smallpox exposure although this has not been definitively studied in humans. The first and second chapters analyze post-exposure prophylaxis of VACV in an animal model using v50ΔB13RMγ, a recombinant VACV expressing murine interferon gamma (IFN-γ) also known as type II IFN. While untreated animals infected with wild type VACV die by 10 days post-infection (dpi), animals treated with v50ΔB13RMγ 1 dpi had decreased morbidity and 100% survival. Despite these differences, the viral load was similar in both groups suggesting that v50ΔB13RMγ acts as an immunoregulator rather than as an antiviral. One of the main characteristics of VACV is its resistance to type I IFN, an effect primarily mediated by the E3L protein, which has a Z-DNA binding domain and a double-stranded RNA (dsRNA) binding domain. In the third chapter a VACV that independently expresses both domains of E3L was engineered and compared to wild type in cells in culture. The dual expression virus was unable to replicate in the JC murine cell line where both domains are needed together for replication. Moreover, phosphorylation of the dsRNA dependent protein kinase (PKR) was observed at late times post-infection which indicates that both domains need to be linked together in order to block the IFN response. Because smallpox has already been eradicated, the utility of mathematical modeling as a tool for predicting disease spread and vaccine efficacy was explored in the last chapter using dengue as a disease model. Current modeling approaches were reviewed and the 2000-2001 dengue outbreak in a Peruvian region was analyzed. This last section highlights the importance of interdisciplinary collaboration and how it benefits research on infectious diseases.
ContributorsHolechek, Susan A (Author) / Jacobs, Bertram L (Thesis advisor) / Castillo-Chavez, Carlos (Committee member) / Frasch, Wayne (Committee member) / Hogue, Brenda (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2011
151048-Thumbnail Image.png
Description
A sequence of models is developed to describe urban population growth in the context of the embedded physical, social and economic environments and an urban disease are developed. This set of models is focused on urban growth and the relationship between the desire to move and the utility derived from

A sequence of models is developed to describe urban population growth in the context of the embedded physical, social and economic environments and an urban disease are developed. This set of models is focused on urban growth and the relationship between the desire to move and the utility derived from city life. This utility is measured in terms of the economic opportunities in the city, the level of human constructed amenity, and the level of amenity caused by the natural environment. The set of urban disease models is focused on examining prospects of eliminating a disease for which a vaccine does not exist. It is inspired by an outbreak of the vector-borne disease dengue fever in Peru, during 2000-2001.
ContributorsMurillo, D (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Anderies, John M (Thesis advisor) / Boone, Christopher (Committee member) / Arizona State University (Publisher)
Created2012
156506-Thumbnail Image.png
Description
In this dissertation the potential impact of some social, cultural and economic factors on

Ebola Virus Disease (EVD) dynamics and control are studied. In Chapter two, the inability

to detect and isolate a large fraction of EVD-infected individuals before symptoms onset is

addressed. A mathematical model, calibrated with data from the 2014 West

In this dissertation the potential impact of some social, cultural and economic factors on

Ebola Virus Disease (EVD) dynamics and control are studied. In Chapter two, the inability

to detect and isolate a large fraction of EVD-infected individuals before symptoms onset is

addressed. A mathematical model, calibrated with data from the 2014 West African outbreak,

is used to show the dynamics of EVD control under various quarantine and isolation

effectiveness regimes. It is shown that in order to make a difference it must reach a high

proportion of the infected population. The effect of EVD-dead bodies has been incorporated

in the quarantine effectiveness. In Chapter four, the potential impact of differential

risk is assessed. A two-patch model without explicitly incorporate quarantine is used to

assess the impact of mobility on communities at risk of EVD. It is shown that the

overall EVD burden may lessen when mobility in this artificial high-low risk society is allowed.

The cost that individuals in the low-risk patch must pay, as measured by secondary

cases is highlighted. In Chapter five a model explicitly incorporating patch-specific quarantine

levels is used to show that quarantine a large enough proportion of the population

under effective isolation leads to a measurable reduction of secondary cases in the presence

of mobility. It is shown that sharing limited resources can improve the effectiveness of

EVD effective control in the two-patch high-low risk system. Identifying the conditions

under which the low-risk community would be willing to accept the increases in EVD risk,

needed to reduce the total number of secondary cases in a community composed of two

patches with highly differentiated risks has not been addressed. In summary, this dissertation

looks at EVD dynamics within an idealized highly polarized world where resources

are primarily in the hands of a low-risk community – a community of lower density, higher

levels of education and reasonable health services – that shares a “border” with a high-risk

community that lacks minimal resources to survive an EVD outbreak.
ContributorsEspinoza Cortes, Baltazar (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Kang, Yun (Committee member) / Safan, Muntaser (Committee member) / Arizona State University (Publisher)
Created2018
136284-Thumbnail Image.png
Description
Background: While research has quantified the mortality burden of the 1957 H2N2 influenza pandemic in the United States, little is known about how the virus spread locally in Arizona, an area where the dry climate was promoted as reducing respiratory illness transmission yet tuberculosis prevalence was high.
Methods: Using archival

Background: While research has quantified the mortality burden of the 1957 H2N2 influenza pandemic in the United States, little is known about how the virus spread locally in Arizona, an area where the dry climate was promoted as reducing respiratory illness transmission yet tuberculosis prevalence was high.
Methods: Using archival death certificates from 1954 to 1961, this study quantified the age-specific seasonal patterns, excess-mortality rates, and transmissibility patterns of the 1957 pandemic in Maricopa County, Arizona. By applying cyclical Serfling linear regression models to weekly mortality rates, the excess-mortality rates due to respiratory and all-causes were estimated for each age group during the pandemic period. The reproduction number was quantified from weekly data using a simple growth rate method and generation intervals of 3 and 4 days. Local newspaper articles from The Arizona Republic were analyzed from 1957-1958.
Results: Excess-mortality rates varied between waves, age groups, and causes of death, but overall remained low. From October 1959-June 1960, the most severe wave of the pandemic, the absolute excess-mortality rate based on respiratory deaths per 10,000 population was 17.85 in the elderly (≥65 years). All other age groups had extremely low excess-mortality and the typical U-shaped age-pattern was absent. However, relative risk was greatest (3.61) among children and young adolescents (5-14 years) from October 1957-March 1958, based on incidence rates of respiratory deaths. Transmissibility was greatest during the same 1957-1958 period, when the mean reproduction number was 1.08-1.11, assuming 3 or 4 day generation intervals and exponential or fixed distributions.
Conclusions: Maricopa County largely avoided pandemic influenza from 1957-1961. Understanding this historical pandemic and the absence of high excess-mortality rates and transmissibility in Maricopa County may help public health officials prepare for and mitigate future outbreaks of influenza.
ContributorsCobos, April J (Author) / Jehn, Megan (Thesis director) / Chowell-Puente, Gerardo (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2015-05
137139-Thumbnail Image.png
Description
The influenza virus, also known as "the flu", is an infectious disease that has constantly affected the health of humanity. There is currently no known cure for Influenza. The Center for Innovations in Medicine at the Biodesign Institute located on campus at Arizona State University has been developing synbodies as

The influenza virus, also known as "the flu", is an infectious disease that has constantly affected the health of humanity. There is currently no known cure for Influenza. The Center for Innovations in Medicine at the Biodesign Institute located on campus at Arizona State University has been developing synbodies as a possible Influenza therapeutic. Specifically, at CIM, we have attempted to design these initial synbodies to target the entire Influenza virus and preliminary data leads us to believe that these synbodies target Nucleoprotein (NP). Given that the synbody targets NP, the penetration of cells via synbody should also occur. Then by Western Blot analysis we evaluated for the diminution of NP level in treated cells versus untreated cells. The focus of my honors thesis is to explore how synthetic antibodies can potentially inhibit replication of the Influenza (H1N1) A/Puerto Rico/8/34 strain so that a therapeutic can be developed. A high affinity synbody for Influenza can be utilized to test for inhibition of Influenza as shown by preliminary data. The 5-5-3819 synthetic antibody's internalization in live cells was visualized with Madin-Darby Kidney Cells under a Confocal Microscope. Then by Western Blot analysis we evaluated for the diminution of NP level in treated cells versus untreated cells. Expression of NP over 8 hours time was analyzed via Western Blot Analysis, which showed NP accumulation was retarded in synbody treated cells. The data obtained from my honors thesis and preliminary data provided suggest that the synthetic antibody penetrates live cells and targets NP. The results of my thesis presents valuable information that can be utilized by other researchers so that future experiments can be performed, eventually leading to the creation of a more effective therapeutic for influenza.
ContributorsHayden, Joel James (Author) / Diehnelt, Chris (Thesis director) / Johnston, Stephen (Committee member) / Legutki, Bart (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
133210-Thumbnail Image.png
Description
Advancements in both the medical field and public health have substantially minimized the detrimental impact of infectious diseases. Health education and disease prevention remains a vital tool to maintain and propagate this success. In order to determine the relationship between knowledge of disease and reported preventative behavior 180 participants amongst

Advancements in both the medical field and public health have substantially minimized the detrimental impact of infectious diseases. Health education and disease prevention remains a vital tool to maintain and propagate this success. In order to determine the relationship between knowledge of disease and reported preventative behavior 180 participants amongst the ASU student population were surveyed about their knowledge and prevention behavior for 10 infectious diseases. Of the 180 participants only 138 were completed surveys and used for analysis. No correlation was found between knowledge or perceived risk and preventative measures within the total sample of 138 respondents, however there was a correlation found within Lyme disease and Giardia exposure to information and prevention. Additionally, a cultural consensus analysis was used to compare the data of 17 US-born and 17 foreign-born participants to analyze patterns of variation and agreement on disease education based on national origins. Cultural consensus analysis showed a strong model of agreement among all participants as well as within the US-born and foreign-born student groups. There was a model of agreement within the questions pertaining to transmission and symptoms. There was not however a model of agreement within treatment questions. The findings suggest that accurate knowledge on infectious diseases may be less impactful on preventative behavior than social expectations.
ContributorsVernon, Samantha (Author) / Maupin, Jonathan (Thesis director) / Jehn, Megan (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2018-05
157412-Thumbnail Image.png
Description
Understanding the consequences of changes in social networks is an important an-

thropological research goal. This dissertation looks at the role of data-driven social

networks on infectious disease transmission and evolution. The dissertation has two

projects. The first project is an examination of the effects of the superspreading

phenomenon, wherein a relatively few individuals

Understanding the consequences of changes in social networks is an important an-

thropological research goal. This dissertation looks at the role of data-driven social

networks on infectious disease transmission and evolution. The dissertation has two

projects. The first project is an examination of the effects of the superspreading

phenomenon, wherein a relatively few individuals are responsible for a dispropor-

tionate number of secondary cases, on the patterns of an infectious disease. The

second project examines the timing of the initial introduction of tuberculosis (TB) to

the human population. The results suggest that TB has a long evolutionary history

with hunter-gatherers. Both of these projects demonstrate the consequences of social

networks for infectious disease transmission and evolution.

The introductory chapter provides a review of social network-based studies in an-

thropology and epidemiology. Particular emphasis is paid to the concept and models

of superspreading and why to consider it, as this is central to the discussion in chapter

2. The introductory chapter also reviews relevant epidemic mathematical modeling

studies.

In chapter 2, social networks are connected with superspreading events, followed

by an investigation of how social networks can provide greater understanding of in-

fectious disease transmission through mathematical models. Using the example of

SARS, the research shows how heterogeneity in transmission rate impacts super-

spreading which, in turn, can change epidemiological inference on model parameters

for an epidemic.

Chapter 3 uses a different mathematical model to investigate the evolution of TB

in hunter-gatherers. The underlying question is the timing of the introduction of TB

to the human population. Chapter 3 finds that TB’s long latent period is consistent

with the evolutionary pressure which would be exerted by transmission on a hunter-

igatherer social network. Evidence of a long coevolution with humans indicates an

early introduction of TB to the human population.

Both of the projects in this dissertation are demonstrations of the impact of var-

ious characteristics and types of social networks on infectious disease transmission

dynamics. The projects together force epidemiologists to think about networks and

their context in nontraditional ways.
ContributorsNesse, Hans P (Author) / Hurtado, Ana Magdalena (Thesis advisor) / Castillo-Chavez, Carlos (Committee member) / Mubayi, Anuj (Committee member) / Arizona State University (Publisher)
Created2019