Matching Items (6)
Filtering by

Clear all filters

136284-Thumbnail Image.png
Description
Background: While research has quantified the mortality burden of the 1957 H2N2 influenza pandemic in the United States, little is known about how the virus spread locally in Arizona, an area where the dry climate was promoted as reducing respiratory illness transmission yet tuberculosis prevalence was high.
Methods: Using archival

Background: While research has quantified the mortality burden of the 1957 H2N2 influenza pandemic in the United States, little is known about how the virus spread locally in Arizona, an area where the dry climate was promoted as reducing respiratory illness transmission yet tuberculosis prevalence was high.
Methods: Using archival death certificates from 1954 to 1961, this study quantified the age-specific seasonal patterns, excess-mortality rates, and transmissibility patterns of the 1957 pandemic in Maricopa County, Arizona. By applying cyclical Serfling linear regression models to weekly mortality rates, the excess-mortality rates due to respiratory and all-causes were estimated for each age group during the pandemic period. The reproduction number was quantified from weekly data using a simple growth rate method and generation intervals of 3 and 4 days. Local newspaper articles from The Arizona Republic were analyzed from 1957-1958.
Results: Excess-mortality rates varied between waves, age groups, and causes of death, but overall remained low. From October 1959-June 1960, the most severe wave of the pandemic, the absolute excess-mortality rate based on respiratory deaths per 10,000 population was 17.85 in the elderly (≥65 years). All other age groups had extremely low excess-mortality and the typical U-shaped age-pattern was absent. However, relative risk was greatest (3.61) among children and young adolescents (5-14 years) from October 1957-March 1958, based on incidence rates of respiratory deaths. Transmissibility was greatest during the same 1957-1958 period, when the mean reproduction number was 1.08-1.11, assuming 3 or 4 day generation intervals and exponential or fixed distributions.
Conclusions: Maricopa County largely avoided pandemic influenza from 1957-1961. Understanding this historical pandemic and the absence of high excess-mortality rates and transmissibility in Maricopa County may help public health officials prepare for and mitigate future outbreaks of influenza.
ContributorsCobos, April J (Author) / Jehn, Megan (Thesis director) / Chowell-Puente, Gerardo (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2015-05
137139-Thumbnail Image.png
Description
The influenza virus, also known as "the flu", is an infectious disease that has constantly affected the health of humanity. There is currently no known cure for Influenza. The Center for Innovations in Medicine at the Biodesign Institute located on campus at Arizona State University has been developing synbodies as

The influenza virus, also known as "the flu", is an infectious disease that has constantly affected the health of humanity. There is currently no known cure for Influenza. The Center for Innovations in Medicine at the Biodesign Institute located on campus at Arizona State University has been developing synbodies as a possible Influenza therapeutic. Specifically, at CIM, we have attempted to design these initial synbodies to target the entire Influenza virus and preliminary data leads us to believe that these synbodies target Nucleoprotein (NP). Given that the synbody targets NP, the penetration of cells via synbody should also occur. Then by Western Blot analysis we evaluated for the diminution of NP level in treated cells versus untreated cells. The focus of my honors thesis is to explore how synthetic antibodies can potentially inhibit replication of the Influenza (H1N1) A/Puerto Rico/8/34 strain so that a therapeutic can be developed. A high affinity synbody for Influenza can be utilized to test for inhibition of Influenza as shown by preliminary data. The 5-5-3819 synthetic antibody's internalization in live cells was visualized with Madin-Darby Kidney Cells under a Confocal Microscope. Then by Western Blot analysis we evaluated for the diminution of NP level in treated cells versus untreated cells. Expression of NP over 8 hours time was analyzed via Western Blot Analysis, which showed NP accumulation was retarded in synbody treated cells. The data obtained from my honors thesis and preliminary data provided suggest that the synthetic antibody penetrates live cells and targets NP. The results of my thesis presents valuable information that can be utilized by other researchers so that future experiments can be performed, eventually leading to the creation of a more effective therapeutic for influenza.
ContributorsHayden, Joel James (Author) / Diehnelt, Chris (Thesis director) / Johnston, Stephen (Committee member) / Legutki, Bart (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
133210-Thumbnail Image.png
Description
Advancements in both the medical field and public health have substantially minimized the detrimental impact of infectious diseases. Health education and disease prevention remains a vital tool to maintain and propagate this success. In order to determine the relationship between knowledge of disease and reported preventative behavior 180 participants amongst

Advancements in both the medical field and public health have substantially minimized the detrimental impact of infectious diseases. Health education and disease prevention remains a vital tool to maintain and propagate this success. In order to determine the relationship between knowledge of disease and reported preventative behavior 180 participants amongst the ASU student population were surveyed about their knowledge and prevention behavior for 10 infectious diseases. Of the 180 participants only 138 were completed surveys and used for analysis. No correlation was found between knowledge or perceived risk and preventative measures within the total sample of 138 respondents, however there was a correlation found within Lyme disease and Giardia exposure to information and prevention. Additionally, a cultural consensus analysis was used to compare the data of 17 US-born and 17 foreign-born participants to analyze patterns of variation and agreement on disease education based on national origins. Cultural consensus analysis showed a strong model of agreement among all participants as well as within the US-born and foreign-born student groups. There was a model of agreement within the questions pertaining to transmission and symptoms. There was not however a model of agreement within treatment questions. The findings suggest that accurate knowledge on infectious diseases may be less impactful on preventative behavior than social expectations.
ContributorsVernon, Samantha (Author) / Maupin, Jonathan (Thesis director) / Jehn, Megan (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2018-05
187567-Thumbnail Image.png
Description
The current coronavirus disease 2019 (COVID-19) pandemic has highlighted the crucial role of mathematical models in predicting, assessing, and controlling potential outbreaks. Numerous modeling studies using statistics or differential equations have been proposed to analyze the COVID-19 dynamics, with network analysis and cluster analysis also being adapted to understand disease

The current coronavirus disease 2019 (COVID-19) pandemic has highlighted the crucial role of mathematical models in predicting, assessing, and controlling potential outbreaks. Numerous modeling studies using statistics or differential equations have been proposed to analyze the COVID-19 dynamics, with network analysis and cluster analysis also being adapted to understand disease transmission from multiple perspectives. This dissertation explores the use of network science and mathematical models to improve the understanding of infectious diseases. Chapter 1 provides an introduction to infectious disease modeling, its history, importance, and challenges. It also introduces network science as a powerful tool for understanding the complex interactions between individuals that can facilitate disease spread. Chapter 2 develops a statistical model that describes HIV infection and disease progression in a men who have sex with men cohort in Japan receiving a Pre-Exposure Prophylaxis (PrEP) program. The cost-effectiveness of the PrEP programwas evaluated by comparing the incremental cost-effectiveness ratio over a 30-year period against the willingness to pay threshold. Chapter 3 presents an ordinary differential equations model to describe disease transmission and the effects of vaccination and mobility restrictions. Chapter 4 extends the ODE model to include spatial heterogeneity and presents partial differential equations models. These models describe the combined effects of local transmission, transboundary transmission, and human intervention on COVID-19 dynamics. Finally, Chapter 5 concludes the dissertation by emphasizing the importance of developing relevant disease models to understand and predict the spread of infectious diseases by combining network science and mathematical tools.
ContributorsYamamoto, Nao (Author) / Wang, Haiyan (Thesis advisor) / Lampert, Adam (Thesis advisor) / Jehn, Megan (Committee member) / Arizona State University (Publisher)
Created2023
131315-Thumbnail Image.png
Description
Objective: To provide insight into the World Health Organization SAGE Working Group Vaccine Hesitancy Survey by applying the tool to populations across Maricopa County, Arizona. Design: An online survey was conducted using the Qualtrics Survey Software, of individuals residing in Maricopa County, Arizona during the month of October 2019. Results:

Objective: To provide insight into the World Health Organization SAGE Working Group Vaccine Hesitancy Survey by applying the tool to populations across Maricopa County, Arizona. Design: An online survey was conducted using the Qualtrics Survey Software, of individuals residing in Maricopa County, Arizona during the month of October 2019. Results: Of 209 respondents, the followed demonstrated to be the top 3 reasons for either having not received the flu shot yet or having not planned to receive the flu shot: “I’m healthy, I don’t need it”(20.1%); “Worried I might get the flu from it”(17.7%); “I don’t think it works”(17.7%) Statistical analysis demonstrated that vaccine hesitant and non-hesitant respondents are likely to respond differently to topics covering: safety of vaccines; self-perceived health status; importance of the flu shot among one’s peers; flu vaccine related knowledge Conclusions: The WHO VHS applied to the population of Maricopa County, Arizona reported little hesitancy towards the seasonal flu vaccine. Statistical analysis of Vaccine Hesitant respondents vs. Non-Hesitant respondents demonstrates that specified public health education focused on the immunological implications of vaccines may be needed for the hesitant population to gain confidence in vaccine efficacy. A more diverse respondent group that consists of residents beyond the county lines of Maricopa is needed to understand the full scope of vaccine hesitancy that exists in Arizona.
ContributorsMaroofi, Hanna (Co-author, Co-author) / Jehn, Megan (Thesis director) / Muabyi, Anuj (Committee member) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
168620-Thumbnail Image.png
Description
Contact tracing was deployed widely during the COVID-19 pandemic to attempt to stop the spread of SARS Co-V-2. This dissertation investigates the research on contact tracing from a scientometric perspective and looks qualitatively at how case investigators and contact tracers conducted public health practice during the pandemic. Through

Contact tracing was deployed widely during the COVID-19 pandemic to attempt to stop the spread of SARS Co-V-2. This dissertation investigates the research on contact tracing from a scientometric perspective and looks qualitatively at how case investigators and contact tracers conducted public health practice during the pandemic. Through approaching the public health practice of contact tracing from both a broad, top-down angle, and an on the ground experiential approach, this dissertation provides insight into the issues facing contact tracing as a public health tool.
ContributorsWhite, Alexandra C. (Author) / Jehn, Megan (Thesis advisor) / Hruschka, Daniel (Committee member) / Gaughan, Monica (Committee member) / Arizona State University (Publisher)
Created2022