Matching Items (21)
Filtering by

Clear all filters

148174-Thumbnail Image.png
Description

Much of Nepal lacks access to clean drinking water, and many water sources are contaminated with arsenic at concentrations above both World Health Organization and local Nepalese guidelines. While many water treatment technologies exist, it is necessary to identify those that are easily implementable in developing areas. One simple treatment

Much of Nepal lacks access to clean drinking water, and many water sources are contaminated with arsenic at concentrations above both World Health Organization and local Nepalese guidelines. While many water treatment technologies exist, it is necessary to identify those that are easily implementable in developing areas. One simple treatment that has gained popularity is biochar—a porous, carbon-based substance produced through pyrolysis of biomass in an oxygen-free environment. Arizona State University’s Engineering Projects in Community Service (EPICS) has partnered with communities in Nepal in an attempt to increase biochar production in the area, as it has several valuable applications including water treatment. Biochar’s arsenic adsorption capability will be investigated in this project with the goal of using the biochar that Nepalese communities produce to remove water contaminants. It has been found in scientific literature that biochar is effective in removing heavy metal contaminants from water with the addition of iron through surface activation. Thus, the specific goal of this research was to compare the arsenic adsorption disparity between raw biochar and iron-impregnated biochar. It was hypothesized that after numerous bed volumes pass through a water treatment column, iron from the source water will accumulate on the surface of raw biochar, mimicking the intentionally iron-impregnated biochar and further increasing contaminant uptake. It is thus an additional goal of this project to compare biochar loaded with iron through an iron-spiked water column and biochar impregnated with iron through surface oxidation. For this investigation, the biochar was crushed and sieved to a size between 90 and 100 micrometers. Two samples were prepared: raw biochar and oxidized biochar. The oxidized biochar was impregnated with iron through surface oxidation with potassium permanganate and iron loading. Then, X-ray fluorescence was used to compare the composition of the oxidized biochar with its raw counterpart, indicating approximately 0.5% iron in the raw and 1% iron in the oxidized biochar. The biochar samples were then added to batches of arsenic-spiked water at iron to arsenic concentration ratios of 20 mg/L:1 mg/L and 50 mg/L:1 mg/L to determine adsorption efficiency. Inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated an 86% removal of arsenic using a 50:1 ratio of iron to arsenic (1.25 g biochar required in 40 mL solution), and 75% removal with a 20:1 ratio (0.5 g biochar required in 40 mL solution). Additional samples were then inserted into a column process apparatus for further adsorption analysis. Again, ICP-MS analysis was performed and the results showed that while both raw and treated biochars were capable of adsorbing arsenic, they were exhausted after less than 70 bed volumes (234 mL), with raw biochar lasting 60 bed volumes (201 mL) and oxidized about 70 bed volumes (234 mL). Further research should be conducted to investigate more affordable and less laboratory-intensive processes to prepare biochar for water treatment.

ContributorsLaird, Ashlyn (Author) / Schoepf, Jared (Thesis director) / Westerhoff, Paul (Committee member) / Chemical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136556-Thumbnail Image.png
Description
Due to the environmental problems caused by global warming, it has become necessary to reduce greenhouse gas emissions across the planet. Biofuels, such as ethanol, have proven to release cleaner emissions when combusted. However, large scale production of these alcohols is uneconomical and inefficient due to limitations in standard separation

Due to the environmental problems caused by global warming, it has become necessary to reduce greenhouse gas emissions across the planet. Biofuels, such as ethanol, have proven to release cleaner emissions when combusted. However, large scale production of these alcohols is uneconomical and inefficient due to limitations in standard separation processes, the most common being distillation. Pervaporation is a novel separation technique that utilizes a specialized membrane to separate multicomponent solutions. In this research project, pervaporation utilizing ZIF-71/PDMS mixed matrix membranes are investigated to see their ability to recover ethanol from an ethanol/aqueous separation. Membranes with varying nanoparticle concentrations were created and their performances were analyzed. While the final results indicate that no correlation exists between nanoparticle weight percentage and selectivity, this technology is still a promising avenue for biofuel production. Future work will be conducted to improve this existing process and enhance membrane selectivity.
ContributorsHoward, Chelsea Elizabeth (Author) / Lind, Mary Laura (Thesis director) / Nielsen, David (Committee member) / Greenlee, Lauren (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor)
Created2015-05
136500-Thumbnail Image.png
Description
Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As

Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As demand grows, new ethanol plants must be developed in order for supply to meet demand. This report covers some of the major considerations in developing these new plants such as the type of biomass used, feed treatment process, and product separation and investigates their effect on the economic viability and environmental benefits of the ethanol produced. The dry grind process for producing ethanol from corn, the most common method of production, is examined in greater detail. Analysis indicates that this process currently has the highest capacity for production and profitability but limited effect on greenhouse gas emissions compared to less common alternatives.
ContributorsSchrilla, John Paul (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
Description
This document outlines the research work done by Shona Becwar in the process design and refinement for the production of sustainable butanol from Clostridium, along with the required background knowledge on the subject. The process that the microbiological organisms go through to produce butanol must be an oxygen free environment

This document outlines the research work done by Shona Becwar in the process design and refinement for the production of sustainable butanol from Clostridium, along with the required background knowledge on the subject. The process that the microbiological organisms go through to produce butanol must be an oxygen free environment for up to 21 days with multiple perforations made into the environment in this period. There was not previously a cost effective method to do this, even in small scale. It was determined that using a butyl rubber septa would allow for the environment to be sustained during the growth process. The pervaporation process was losing butanol product at a rate of approximately 60%, changing the tubing from silicon to stainless steel allowed for a mere 7% loss during the separation process, greatly increasing the prospective of upscaling this process. These improvements to the sustainable butanol production process will allow for a more efficient, therefore more economically competitive product which can be used as a drop in equivalent to the current butanol market.
ContributorsBecwar, Shona Marie (Author) / Nielsen, David R. (Thesis director) / Staggs, Kyle (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137034-Thumbnail Image.png
Description
The recovery of biofuels permits renewable alternatives to present day fossil fuels that cause devastating effects on the planet. Pervaporation is a separation process that shows promise for the separation of ethanol from biologically fermentation broths. The performance of thin film composite membranes of polydimethylsiloxane (PDMS) and zeolite imidazolate frameworks

The recovery of biofuels permits renewable alternatives to present day fossil fuels that cause devastating effects on the planet. Pervaporation is a separation process that shows promise for the separation of ethanol from biologically fermentation broths. The performance of thin film composite membranes of polydimethylsiloxane (PDMS) and zeolite imidazolate frameworks (ZIF-71) dip coated onto a porous substrate are analyzed. Pervaporation performance factors of flux, separation factor and selectivity are measured for varying ZIF-71 loadings of pure PDMS, 5 wt%, 12.5 wt% and 25 wt% at 60 oC with a 2 wt% ethanol/water feed. The increase in ZIF-71 loadings increased the performance of PDMS to produce higher flux, higher separation factor and high selectivity than pure polymeric films.
ContributorsLau, Ching Yan (Author) / Lind, Mary Laura (Thesis director) / Durgun, Pinar Cay (Committee member) / Lively, Ryan (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
Description
Styrene, a component of many rubber products, is currently synthesized from petroleum in a highly energy-intensive process. The Nielsen Laboratory at Arizona State has demonstrated a biochemical pathway by which E. coli can be engineered to produce styrene from the amino acid phenylalanine, which E. coli naturally synthesizes from glucose.

Styrene, a component of many rubber products, is currently synthesized from petroleum in a highly energy-intensive process. The Nielsen Laboratory at Arizona State has demonstrated a biochemical pathway by which E. coli can be engineered to produce styrene from the amino acid phenylalanine, which E. coli naturally synthesizes from glucose. However, styrene becomes toxic to E. coli above concentrations of 300 mg/L, severely limiting the large-scale applicability of the pathway. Thus, styrene must somehow be continuously removed from the system to facilitate higher yields and for the purposes of scale-up. The separation methods of pervaporation and solvent extraction were investigated to this end. Furthermore, the styrene pathway was extended by one step to produce styrene oxide, which is less volatile than styrene and theoretically simpler to recover. Adsorption of styrene oxide using the hydrophobic resin L-493 was attempted in order to improve the yield of styrene oxide and to provide additional proof of concept that the flux through the styrene pathway can be increased. The maximum styrene titer achieved was 1.2 g/L using the method of solvent extraction, but this yield was only possible when additional phenylalanine was supplemented to the system.
ContributorsMcDaniel, Matthew Cary (Author) / Nielsen, David (Thesis director) / Lind, Mary Laura (Committee member) / McKenna, Rebekah (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
137240-Thumbnail Image.png
Description
The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining the ideal conditions for styrene oxide production from E. coli. Adsorption is an effective means of separation used in industry

The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining the ideal conditions for styrene oxide production from E. coli. Adsorption is an effective means of separation used in industry to separate compounds, often organics from air and water. Styrene oxide adsorption runs without E. coli were conducted at concentrations ranging from 0.15 to 3.00 g/L with resin masses ranging from 0.1 to 0.5 g of Dowex Optipore L-493 and 0.5 to 0.75 g of mesoporous carbon adsorbent. Runs were conducted on a shake plate operating at 80 rpm for 24 hours at ambient temperature. Isotherms were developed from the results and then adsorption experiments with E. coli and L-493 were performed. Runs were conducted at glucose concentrations ranging from 20-40 g/L and resin masses of 0.100 g to 0.800 g. Samples were incubated for 72 hours and styrene oxide production was measured using an HPLC device. Specific loading values reached up to 0.356 g/g for runs without E. coli and nearly 0.003 g of styrene oxide was adsorbed by L-493 during runs with E. coli. Styrene oxide production was most effective at low resin masses and medium glucose concentrations when produced by E. coli.
ContributorsHsu, Joshua (Co-author) / Oremland, Zachary (Co-author) / Nielsen, David (Thesis director) / Staggs, Kyle (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
136486-Thumbnail Image.png
Description
This study was conducted to better understand the making and measuring of renewable energy goals by the federal government. Three different energy types are studied: wind, solar, and biofuel, for two different federal departments: the Department of Defense and the Department of Energy. A statistical analysis and a meta-analysis of

This study was conducted to better understand the making and measuring of renewable energy goals by the federal government. Three different energy types are studied: wind, solar, and biofuel, for two different federal departments: the Department of Defense and the Department of Energy. A statistical analysis and a meta-analysis of current literature will be the main pieces of information. These departments and energy types were chosen as they represent the highest potential for renewable energy production. It is important to understand any trends in goal setting by the federal government, as well as to understand what these trends represent in terms of predicting renewable energy production. The conclusion for this paper is that the federal government appears to set high goals for renewable energy initiatives. While the goals appear to be high, they are designed based on required characteristics described by the federal government. These characteristics are most often technological advancements, tax incentives, or increased production, with tax incentives having the highest priority. However, more often than not these characteristics are optimistic or simply not met. This leads to the resetting of goals before any goal can be evaluated, making it difficult to determine the goal-setting ability of the federal government.
ContributorsStapleton, Andrew (Co-author) / Charnell, Matthew (Co-author) / Printezis, Antonios (Thesis director) / Kull, Thomas (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Department of Supply Chain Management (Contributor)
Created2015-05
136570-Thumbnail Image.png
Description
The R-specific alcohol dehydrogenase (RADH or LVIS_0347) from Lactobacillus brevis LB19 was found to possess activity on several short chain aldehydes and ketones. This broad substrate specificity was previously uncharacterized. To demonstrate its relevance to the biofuels industry as well as its broader utility for chiral reductions, a detailed characterization

The R-specific alcohol dehydrogenase (RADH or LVIS_0347) from Lactobacillus brevis LB19 was found to possess activity on several short chain aldehydes and ketones. This broad substrate specificity was previously uncharacterized. To demonstrate its relevance to the biofuels industry as well as its broader utility for chiral reductions, a detailed characterization was performed to further investigate the activity and function of RADH.
ContributorsHalloum, Ibrahim (Co-author) / Pugh, Shawn (Co-author) / Nielsen, David R. (Thesis director) / Rege, Kaushal (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
132228-Thumbnail Image.png
Description
Fossil fuels have been the primary source of energy in the world for many decades. However, they are among the top contributors of the greenhouse gas emissions in the atmosphere. The objective of this research was to produce a more environmentally friendly biofuel from Algae-Helix and Salicornia biomasses. Experiments were

Fossil fuels have been the primary source of energy in the world for many decades. However, they are among the top contributors of the greenhouse gas emissions in the atmosphere. The objective of this research was to produce a more environmentally friendly biofuel from Algae-Helix and Salicornia biomasses. Experiments were conducted using a hydrothermal liquefaction (HTL) technique in the HTL reactor to produce biofuel that can potentially replace fossil fuel usage. Hydrothermal Liquefaction is a method used to convert the biomass into the biofuels. HTL experiments on Algae-Helix and Salicornia at 200°C-350°C and 430psi were performed to investigate the effect of temperature on the biocrude yield of the respective biomass used. The effect of the biomass mixture (co-liquefaction) of Salicornia and algae on the amount of biocrude produced was also explored. The biocrude and biochar (by-product) obtained from the hydrothermal liquefaction process were also analyzed using thermogravimetric analyzer (TGA). The maximum biocrude yield for the algae-helix biomass and for the Salicornia biomass were both obtained at 300°C which were 34.63% and 7.65% respectively. The co-liquefaction of the two biomasses by 50:50 provided a maximum yield of 17.26% at 250°C. The co-liquefaction of different ratios explored at 250°C and 300°C concluded that Salicornia to algae-helix ratio of 20:80 produced the highest yields of 22.70% and 31.97%. These results showed that co-liquefaction of biomass if paired well with the optimizing temperature can produce a high biocrude yield. The TGA profiles investigated have shown that salicornia has higher levels of ash content in comparison with the algae-helix. It was then recommended that for a mixture of algae and Salicornia, large-scale biofuel production should be conducted at 250℃ in a 20:80 salicornia to algae biocrude ratio, since it lowers energy needs. The high biochar content left can be recycled to optimize biomass, and prevent wastage.
ContributorsLaideson, Maymary Everrest (Co-author) / Luboowa, Kato (Co-author) / Deng, Shuguang (Thesis director) / Nielsen, David (Committee member) / Chemical Engineering Program (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05