Matching Items (6)
Filtering by

Clear all filters

131522-Thumbnail Image.png
Description
Increasing energy and environmental problems describe the need to develop renewable chemicals and fuels. Global research has been targeting using microbial systems on a commercial scale for synthesis of valuable compounds. The goal of this project was to refactor and overexpress b6-f complex proteins in cyanobacteria to improve photosynthesis under

Increasing energy and environmental problems describe the need to develop renewable chemicals and fuels. Global research has been targeting using microbial systems on a commercial scale for synthesis of valuable compounds. The goal of this project was to refactor and overexpress b6-f complex proteins in cyanobacteria to improve photosynthesis under dynamic light conditions. Improvement in the photosynthetic system can directly relate to higher yields of valuable compounds such as carotenoids and higher yields of biomass which can be used as energy molecules. Four engineered strains of cyanobacteria were successfully constructed and overexpressed the corresponding four large subunits in the cytochrome b6-f complex. No significant changes were found in cell growth or pigment titer in the modified strains compared to the wild type. The growth assay will be performed at higher and/or dynamic light intensities including natural light conditions for further analysis.
ContributorsNauroth, Benjamin (Author) / Varman, Arul (Thesis director) / Singharoy, Abhishek (Committee member) / Li, Han (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
136510-Thumbnail Image.png
Description
This thesis focused on the development of a system that can sense light intensity and then control a smart film to provide the optimal light intensity for cyanobacteria. The overarching goal of this project is to further the study of biofuels as an alternative energy source by increasing growth rates.

This thesis focused on the development of a system that can sense light intensity and then control a smart film to provide the optimal light intensity for cyanobacteria. The overarching goal of this project is to further the study of biofuels as an alternative energy source by increasing growth rates. If more algae or cyanobacteria can be grown per day, then the cost to produce the biofuel will decrease. To achieve this goal, PDLC (polymer dispersed liquid crystal) film was selected to be controlled due to its unique properties. It can be controlled with electricity and has variable states, in other words, not restricted to simply on or off. It also blocks 80% ultraviolet light and reduces thermal heat gain by 40% which is an important consideration for outdoor growing situations. To control the film, a simple control system was created using an Arduino Uno, SainSmart 8 channel relay board, an inverter, and a power supply. A relay board was utilized to manage the 40 volts required by the PDLC film and protected the electronics on the Arduino Uno. To sense the light intensity, the Arduino Uno was connected to a photoresistor, which changes resistance with light intensity. A 15 day test of two flasks of Cyanobacteria Synechocycstis sp. 6803, one shaded by the PDLC film, and the other unshaded, yielded 65% difference in optical densities. Overall, the experiment showed promise for controlling light intensity for photobioreactors. Ideally, this research will help to optimize light intensities when growing cyanobacteria or algae outdoors or it will help to discover what an ideal light intensity is by allowing a researcher unprecedented control.
ContributorsRoney, Kitt Alicia (Author) / Nielsen, David (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136388-Thumbnail Image.png
Description
In our modern world the source of for many chemicals is to acquire and refine oil. This process is becoming an expensive to the environment and to human health. Alternative processes for acquiring the final product have been developed but still need work. One product that is valuable is butanol.

In our modern world the source of for many chemicals is to acquire and refine oil. This process is becoming an expensive to the environment and to human health. Alternative processes for acquiring the final product have been developed but still need work. One product that is valuable is butanol. The normal process for butanol production is very intensive but there is a method to produce butanol from bacteria. This process is better because it is more environmentally safe than using oil. One problem however is that when the bacteria produce too much butanol it reaches the toxicity limit and stops the production of butanol. In order to keep butanol from reaching the toxicity limit an adsorbent is used to remove the butanol without harming the bacteria. The adsorbent is a mesoporous carbon powder that allows the butanol to be adsorbed on it. This thesis explores different designs for a magnetic separation process to extract the carbon powder from the culture.
ContributorsChabra, Rohin (Author) / Nielsen, David (Thesis director) / Torres, Cesar (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
149295-Thumbnail Image.png
Description

Measuring changes in concentration within a dynamic system can be accomplished with a simple Arduino powered system. Currently, the system is utilized in cyanobacteria CO2 fixation experiments, where the fixation rates of multiple cultures can be measured simultaneously. The system employs solenoids in parallel and can be applied for n

Measuring changes in concentration within a dynamic system can be accomplished with a simple Arduino powered system. Currently, the system is utilized in cyanobacteria CO2 fixation experiments, where the fixation rates of multiple cultures can be measured simultaneously. The system employs solenoids in parallel and can be applied for n number of outlet streams, all are connected to one large manifold which feeds to a CO2 concentration probe. In the future, the system can be modified to fit other simple dynamic gas systems.

ContributorsInnes, Sean (Author) / Nielsen, David (Thesis director) / Jones, Christopher (Committee member) / Barrett, The Honors College (Contributor)
Created2021-12
148246-Thumbnail Image.png
Description

The production of sustainable biochemicals has been a major topic of discussion in recent years. Using microbial cells for their production through genetic engineering has been a major topic of research. Cyanobacteria have been considered as a viable candidate for such production. However, the slow growth rate of the cells

The production of sustainable biochemicals has been a major topic of discussion in recent years. Using microbial cells for their production through genetic engineering has been a major topic of research. Cyanobacteria have been considered as a viable candidate for such production. However, the slow growth rate of the cells presents a challenge for the possibility of scaling for use in industrial settings. This project focuses on two different solutions for this problem. The first is using four different engineered strains of Synechocystis sp. PCC 6803 that overexpress the proteins in the b6f complex to improve photosynthetic efficiency. It was found that the strains PetB and PetD showed an increase in growth rate compared to wild type cells. This was especially true under mixotrophic conditions and with a light intensity of 100 µmol photons*m-2s-1 for 3 days. The second solution is by using a newly discovered marine strain of cyanobacteria, Synechococcus sp. PCC 11901, which has a higher reported growth rate. Higher growth rates were achieved for this strain when it was grown mixotrophically with glycerol, and when grown in bubble cultures with aeration.

ContributorsWinsor, Kira Varga (Author) / Varman, Arul Mohzy (Thesis director) / Vermaas, Wim (Committee member) / School of International Letters and Cultures (Contributor) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131771-Thumbnail Image.png
Description
Cyanobacteria have the potential to efficiently produce L-serine, an industrially important amino acid, directly from CO2 and sunlight, which is a more sustainable and inexpensive source of energy as compared to current methods. The research aims to engineer a strain of Cyanobacterium Synechococcus sp. PCC 7002 that increases L-serine production

Cyanobacteria have the potential to efficiently produce L-serine, an industrially important amino acid, directly from CO2 and sunlight, which is a more sustainable and inexpensive source of energy as compared to current methods. The research aims to engineer a strain of Cyanobacterium Synechococcus sp. PCC 7002 that increases L-serine production by mutating regulatory mechanisms that natively inhibit its production and encoding an exporter. While an excess of L-serine was not found in the supernatant of the cell cultures, with further fine tuning of the metabolic pathway and culture conditions, high titers of L-serine can be found. With the base strain engineered, the work can be extended and optimized by deleting degradation pathways, tuning gene expression levels, optimizing growth conditions, and investigating the effects of nitrogen supplementation for the strain.
ContributorsAbed, Omar (Author) / Nielsen, David (Thesis director) / Jones, Christopher (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05