Matching Items (4)
Filtering by

Clear all filters

151523-Thumbnail Image.png
Description
Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and

Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and to formulate continuum models that account for the variability of the damage process due to microstructural heterogeneity. The length scale of damage with respect to that of the surrounding microstructure has proven to be a key aspect in determining sites of failure initiation. Correlations have been found between the damage sites and the surrounding microstructure to determine the preferred sites of spall damage, since it tends to localize at and around the regions of intrinsic defects such as grain boundaries and triple points. However, considerable amount of work still has to be done in this regard to determine the physics driving the damage at these intrinsic weak sites in the microstructure. The main focus of this research work is to understand the physical mechanisms behind the damage localization at these preferred sites. A crystal plasticity constitutive model is implemented with different damage criteria to study the effects of stress concentration and strain localization at the grain boundaries. A cohesive zone modeling technique is used to include the intrinsic strength of the grain boundaries in the simulations. The constitutive model is verified using single elements tests, calibrated using single crystal impact experiments and validated using bicrystal and multicrystal impact experiments. The results indicate that strain localization is the predominant driving force for damage initiation and evolution. The microstructural effects on theses damage sites are studied to attribute the extent of damage to microstructural features such as grain orientation, misorientation, Taylor factor and the grain boundary planes. The finite element simulations show good correlation with the experimental results and can be used as the preliminary step in developing accurate probabilistic models for damage nucleation.
ContributorsKrishnan, Kapil (Author) / Peralta, Pedro (Thesis advisor) / Mignolet, Marc (Committee member) / Sieradzki, Karl (Committee member) / Jiang, Hanqing (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2013
136680-Thumbnail Image.png
Description
Understanding damage evolution, particularly as it relates to local nucleation and growth kinetics of spall failure in metallic materials subjected to shock loading, is critical to national security. This work uses computational modeling to elucidate what characteristics have the highest impact on damage localization at the microstructural level in metallic

Understanding damage evolution, particularly as it relates to local nucleation and growth kinetics of spall failure in metallic materials subjected to shock loading, is critical to national security. This work uses computational modeling to elucidate what characteristics have the highest impact on damage localization at the microstructural level in metallic materials, since knowledge of these characteristics is critical to improve these materials. The numerical framework consists of a user-defined material model implemented in a user subroutine run in ABAQUS/Explicit that takes into account crystal plasticity, grain boundary effects, void nucleation and initial growth, and both isotropic and kinematic hardening to model incipient spall. Finite element simulations were performed on copper bicrystal models to isolate the boundary effects between two grains. Two types of simulations were performed in this work: experimentally verified cases in order to validate the constitutive model as well as idealized cases in an attempt to determine the microstructural characteristic that define weakest links in terms of spall damage. Grain boundary effects on damage localization were studied by varying grain boundary orientation in respect to the shock direction and the crystallographic properties of each grain in the bicrystal. Varying these parameters resulted in a mismatch in Taylor factor across the grain boundary and along the shock direction. The experimentally verified cases are models of specific damage sites found from flyer plate impact tests on copper multicrystals in which the Taylor factor mismatch across the grain boundary and along the shock direction are both high or both low. For the idealized cases, grain boundary orientation and crystallography of the grains are chosen such that the Taylor factor mismatch in the grain boundary normal and along the shock direction are maximized or minimized. A perpendicular grain boundary orientation in respect to the shock direction maximizes Taylor factor mismatch, while a parallel grain boundary minimizes the mismatch. Furthermore, it is known that <1 1 1> crystals have the highest Taylor factor, while <0 0 1> has nearly the lowest Taylor factor. The permutation of these extremes for mismatch in the grain boundary normal and along the shock direction results in four idealized cases that were studied for this work. Results of the simulations demonstrate that the material model is capable of predicting damage localization, as it has been able to reproduce damage sites found experimentally. However, these results are qualitative since further calibration is still required to produce quantitatively accurate results. Moreover, comparisons of results for void nucleation rate and void growth rate suggests that void nucleation is more influential in the total void volume fraction for bicrystals with high property mismatch across the interface, suggesting that nucleation is the dominant characteristic in the propagation of damage in the material. Further work in recalibrating the simulation parameters and modeling different bicrystal orientations must be done to verify these results.
ContributorsVo, Johnathan Hiep (Author) / Peralta, Pedro (Thesis director) / Oswald, Jay (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-12
149487-Thumbnail Image.png
Description
Current trends in the Computer Aided Engineering (CAE) involve the integration of legacy mesh-based finite element software with newer solid-modeling kernels or full CAD systems in order to simplify laborious or highly specialized tasks in engineering analysis. In particular, mesh generation is becoming increasingly automated. In addition, emphasis is increasingly

Current trends in the Computer Aided Engineering (CAE) involve the integration of legacy mesh-based finite element software with newer solid-modeling kernels or full CAD systems in order to simplify laborious or highly specialized tasks in engineering analysis. In particular, mesh generation is becoming increasingly automated. In addition, emphasis is increasingly placed on full assembly (multi-part) models, which in turn necessitates an automated approach to contact analysis. This task is challenging due to increases in algebraic system size, as well as increases in the number of distorted elements - both of which necessitate manual intervention to maintain accuracy and conserve computer resources. In this investigation, it is demonstrated that the use of a mesh-free B-Spline finite element basis for structural contact problems results in significantly smaller algebraic systems than mesh-based approaches for similar grid spacings. The relative error in calculated contact pressure is evaluated for simple two dimensional smooth domains at discrete points within the contact zone and compared to the analytical Hertz solution, as well as traditional mesh-based finite element solutions for similar grid spacings. For smooth curved domains, the relative error in contact pressure is shown to be less than for bi-quadratic Serendipity elements. The finite element formulation draws on some recent innovations, in which the domain to be analyzed is integrated with the use of transformed Gauss points within the domain, and boundary conditions are applied via distance functions (R-functions). However, the basis is stabilized through a novel selective normalization procedure. In addition, a novel contact algorithm is presented in which the B-Spline support grid is re-used for contact detection. The algorithm is demonstrated for two simple 2-dimensional assemblies. Finally, a modified Penalty Method is demonstrated for connecting elements with incompatible bases.
ContributorsGrishin, Alexander (Author) / Shah, Jami J. (Thesis advisor) / Davidson, Joe (Committee member) / Hjelmstad, Keith (Committee member) / Huebner, Ken (Committee member) / Farin, Gerald (Committee member) / Peralta, Pedro (Committee member) / Arizona State University (Publisher)
Created2010
Description
The wide-scale use of green technologies such as electric vehicles has been slowed due to insufficient means of storing enough portable energy. Therefore it is critical that efficient storage mediums be developed in order to transform abundant renewable energy into an on-demand source of power. Lithium (Li) ion batteries are

The wide-scale use of green technologies such as electric vehicles has been slowed due to insufficient means of storing enough portable energy. Therefore it is critical that efficient storage mediums be developed in order to transform abundant renewable energy into an on-demand source of power. Lithium (Li) ion batteries are seeing a stream of improvements as they are introduced into many consumer electronics, electric vehicles and aircraft, and medical devices. Li-ion batteries are well suited for portable applications because of their high energy-to-weight ratios, high energy densities, and reasonable life cycles. Current research into Li-ion batteries is focused on enhancing its energy density, and by changing the electrode materials, greater energy capacities can be realized. Silicon (Si) is a very attractive option because it has the highest known theoretical charge capacity. Current Si anodes, however, suffer from early capacity fading caused by pulverization from the stresses induced by large volumetric changes that occur during charging and discharging. An innovative system aimed at resolving this issue is being developed. This system incorporates a thin Si film bonded to an elastomeric substrate which is intended to provide the desired stress relief. Non-linear finite element simulations have shown that a significant amount of deformation can be accommodated until a critical threshold of Li concentration is reached; beyond which buckling is induced and a wavy structure appears. When compared to a similar system using rigid substrates where no buckling occurs, the stress is reduced by an order of magnitude, significantly prolonging the life of the Si anode. Thus the stress can be released at high Li-ion diffusion induced strains by buckling the Si thin film. Several aspects of this anode system have been analyzed including studying the effects of charge rate and thin film plasticity, and the results are compared with preliminary empirical measurements to show great promise. This study serves as the basis for a radical resolution to one of the few remaining barriers left in the development of high performing Si based electrodes for Li-ion batteries.
ContributorsShaffer, Joseph (Author) / Jiang, Hanqing (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Peralta, Pedro (Committee member) / Arizona State University (Publisher)
Created2011