Matching Items (7)
Filtering by

Clear all filters

136828-Thumbnail Image.png
Description
This study evaluated whether the Story Champs intervention is effective in bilingual kindergarten children who speak Spanish as their native language. Previous research by Spencer and Slocum (2010) found that monolingual, English-speaking participants made significant gains in narrative retelling after intervention. This study implemented the intervention in two languages and

This study evaluated whether the Story Champs intervention is effective in bilingual kindergarten children who speak Spanish as their native language. Previous research by Spencer and Slocum (2010) found that monolingual, English-speaking participants made significant gains in narrative retelling after intervention. This study implemented the intervention in two languages and examined its effects after ten sessions. Results indicate that some children benefited from the intervention and there was variability across languages as well.
ContributorsFernandez, Olga E (Author) / Restrepo, Laida (Thesis director) / Mesa, Carol (Committee member) / Barrett, The Honors College (Contributor) / Department of Speech and Hearing Science (Contributor) / School of International Letters and Cultures (Contributor)
Created2014-05
137447-Thumbnail Image.png
Description
In this study, the Bark transform and Lobanov method were used to normalize vowel formants in speech produced by persons with dysarthria. The computer classification accuracy of these normalized data were then compared to the results of human perceptual classification accuracy of the actual vowels. These results were then analyzed

In this study, the Bark transform and Lobanov method were used to normalize vowel formants in speech produced by persons with dysarthria. The computer classification accuracy of these normalized data were then compared to the results of human perceptual classification accuracy of the actual vowels. These results were then analyzed to determine if these techniques correlated with the human data.
ContributorsJones, Hanna Vanessa (Author) / Liss, Julie (Thesis director) / Dorman, Michael (Committee member) / Borrie, Stephanie (Committee member) / Barrett, The Honors College (Contributor) / Department of Speech and Hearing Science (Contributor) / Department of English (Contributor) / Speech and Hearing Science (Contributor)
Created2013-05
133445-Thumbnail Image.png
Description
The objective of this study was to analyze the auditory feedback system and the pitch-shift reflex in relation to vibrato. 11 subjects (female n = 8, male n = 3) without speech, hearing, or neurological disorders were used. Compensation magnitude, adaptation magnitude, relative response phase, and passive and active perception

The objective of this study was to analyze the auditory feedback system and the pitch-shift reflex in relation to vibrato. 11 subjects (female n = 8, male n = 3) without speech, hearing, or neurological disorders were used. Compensation magnitude, adaptation magnitude, relative response phase, and passive and active perception were recorded when the subjects were subjected to auditory feedback perturbed by phasic amplitude and F0 modulation, or “vibrato”. “Tremolo,” or phasic amplitude modulation, was used as a control. Significant correlation was found between the ability to perceive vibrato and tremolo in active trials and the ability to perceive in passive trials (p=0.01). Passive perceptions were lower (more sensitive) than active perceptions (p< 0.01). Adaptation vibrato trials showed significant modulation magnitude (p=0.031), while tremolo did not. The two conditions were significantly different (p<0.01). There was significant phase change for both tremolo and vibrato, but vibrato phase change was greater, nearly 180° (p<0.01). In the compensation trials, the modulation change from control to vibrato trials was significantly greater than the change from control to tremolo (p=0.01). Vibrato and tremolo also had significantly different average phase change (p<0.01). It can be concluded that the auditory feedback system tries to cancel out dynamic pitch perturbations by cancelling them out out-of-phase. Similar systems must be used to adapt and to compensate to vibrato. Despite the auditory feedback system’s online monitoring, the passive perception was still better than active perception, possibly because it required only one task (perceiving) rather than two (perceiving and producing). The pitch-shift reflex compensates to the sensitivity of the auditory feedback system, as shown by the increased perception of vibrato over tremolo.
ContributorsHiggins, Alexis Brittany (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / Luo, Xin (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
148383-Thumbnail Image.png
Description

The distinctions between the neural resources supporting speech and music comprehension have long been studied using contexts like aphasia and amusia, and neuroimaging in control subjects. While many models have emerged to describe the different networks uniquely recruited in response to speech and music stimuli, there are still many questions,

The distinctions between the neural resources supporting speech and music comprehension have long been studied using contexts like aphasia and amusia, and neuroimaging in control subjects. While many models have emerged to describe the different networks uniquely recruited in response to speech and music stimuli, there are still many questions, especially regarding left-hemispheric strokes that disrupt typical speech-processing brain networks, and how musical training might affect the brain networks recruited for speech after a stroke. Thus, our study aims to explore some questions related to the above topics. We collected task-based functional MRI data from 12 subjects who previously experienced a left-hemispheric stroke. Subjects listened to blocks of spoken sentences and novel piano melodies during scanning to examine the differences in brain activations in response to speech and music. We hypothesized that speech stimuli would activate right frontal regions, and music stimuli would activate the right superior temporal regions more than speech (both findings not seen in previous studies of control subjects), as a result of functional changes in the brain, following the left-hemispheric stroke and particularly the loss of functionality in the left temporal lobe. We also hypothesized that the music stimuli would cause a stronger activation in right temporal cortex for participants who have had musical training than those who have not. Our results indicate that speech stimuli compared to rest activated the anterior superior temporal gyrus bilaterally and activated the right inferior frontal lobe. Music stimuli compared to rest did not activate the brain bilaterally, but rather only activated the right middle temporal gyrus. When the group analysis was performed with music experience as a covariate, we found that musical training did not affect activations to music stimuli specifically, but there was greater right hemisphere activation in several regions in response to speech stimuli as a function of more years of musical training. The results of the study agree with our hypotheses regarding the functional changes in the brain, but they conflict with our hypothesis about musical expertise. Overall, the study has generated interesting starting points for further explorations of how musical neural resources may be recruited for speech processing after damage to typical language networks.

ContributorsKarthigeyan, Vishnu R (Author) / Rogalsky, Corianne (Thesis director) / Daliri, Ayoub (Committee member) / Harrington Bioengineering Program (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131951-Thumbnail Image.png
Description
Previous research has showed that auditory modulation may be affected by pure tone
stimuli played prior to the onset of speech production. In this experiment, we are examining the
specificity of the auditory stimulus by implementing congruent and incongruent speech sounds in
addition to non-speech sound. Electroencephalography (EEG) data was recorded for eleven

Previous research has showed that auditory modulation may be affected by pure tone
stimuli played prior to the onset of speech production. In this experiment, we are examining the
specificity of the auditory stimulus by implementing congruent and incongruent speech sounds in
addition to non-speech sound. Electroencephalography (EEG) data was recorded for eleven adult
subjects in both speaking (speech planning) and silent reading (no speech planning) conditions.
Data analysis was accomplished manually as well as via generation of a MATLAB code to
combine data sets and calculate auditory modulation (suppression). Results of the P200
modulation showed that modulation was larger for incongruent stimuli than congruent stimuli.
However, this was not the case for the N100 modulation. The data for pure tone could not be
analyzed because the intensity of this stimulus was substantially lower than that of the speech
stimuli. Overall, the results indicated that the P200 component plays a significant role in
processing stimuli and determining the relevance of stimuli; this result is consistent with role of
P200 component in high-level analysis of speech and perceptual processing. This experiment is
ongoing, and we hope to obtain data from more subjects to support the current findings.
ContributorsTaylor, Megan Kathleen (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131303-Thumbnail Image.png
Description
The purpose of this study was to compare the speech and motor functions a group of individuals with Childhood Apraxia of Speech (CAS) and a case study of an individual who has suffered a right cerebellar stroke. The participants consisted of one case study adult and three families made u

The purpose of this study was to compare the speech and motor functions a group of individuals with Childhood Apraxia of Speech (CAS) and a case study of an individual who has suffered a right cerebellar stroke. The participants consisted of one case study adult and three families made up of three to five members each, all with a history of CAS. All of the participants in the study performed below average on speech and motor function tests. There are some comparable similarities between the CAS group and the case study individual suggesting that there is cerebellar involvement in the fine motor skills needed to perform speech movements.
ContributorsWilliams, Emma (Author) / Peter, Beate (Thesis director) / Bruce, Laurel (Committee member) / College of Health Solutions (Contributor, Contributor) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
165644-Thumbnail Image.png
Description

When we produce speech movements, we expect a specific auditory consequence, but an error occurs when the predicted outcomes do not match the actual speech outcome. The brain notes these discrepancies, learns from the errors, and works to lower these errors. Previous studies have shown a relationship between speech motor

When we produce speech movements, we expect a specific auditory consequence, but an error occurs when the predicted outcomes do not match the actual speech outcome. The brain notes these discrepancies, learns from the errors, and works to lower these errors. Previous studies have shown a relationship between speech motor learning and auditory targets. Subjects with smaller auditory targets were more sensitive to errors. These subjects estimated larger perturbations and generated larger responses. However, these responses were often ineffective, and the changes were usually minimal. The current study examined whether subjects’ auditory targets can be manipulated in an experimental setting. We recruited 10 healthy young adults to complete a perceptual vowel categorization task. We developed a novel procedure where subjects heard different auditory stimuli and reported the stimuli by locating the stimuli relative to adjacent vowels. We found that when stimuli are closer to vowel boundary, subjects are less accurate. Importantly, by providing visual feedback to subjects, subjects were able to improve their accuracy of locating the stimuli. These results indicated that we might be able to improve subjects’ auditory targets and thus may improve their speech motor learning ability.

ContributorsGurrala, SreeLakshmi (Author) / Daliri, Ayoub (Thesis director) / Chao, Saraching (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Art (Contributor)
Created2022-05