Matching Items (6)
Filtering by

Clear all filters

136828-Thumbnail Image.png
Description
This study evaluated whether the Story Champs intervention is effective in bilingual kindergarten children who speak Spanish as their native language. Previous research by Spencer and Slocum (2010) found that monolingual, English-speaking participants made significant gains in narrative retelling after intervention. This study implemented the intervention in two languages and

This study evaluated whether the Story Champs intervention is effective in bilingual kindergarten children who speak Spanish as their native language. Previous research by Spencer and Slocum (2010) found that monolingual, English-speaking participants made significant gains in narrative retelling after intervention. This study implemented the intervention in two languages and examined its effects after ten sessions. Results indicate that some children benefited from the intervention and there was variability across languages as well.
ContributorsFernandez, Olga E (Author) / Restrepo, Laida (Thesis director) / Mesa, Carol (Committee member) / Barrett, The Honors College (Contributor) / Department of Speech and Hearing Science (Contributor) / School of International Letters and Cultures (Contributor)
Created2014-05
137447-Thumbnail Image.png
Description
In this study, the Bark transform and Lobanov method were used to normalize vowel formants in speech produced by persons with dysarthria. The computer classification accuracy of these normalized data were then compared to the results of human perceptual classification accuracy of the actual vowels. These results were then analyzed

In this study, the Bark transform and Lobanov method were used to normalize vowel formants in speech produced by persons with dysarthria. The computer classification accuracy of these normalized data were then compared to the results of human perceptual classification accuracy of the actual vowels. These results were then analyzed to determine if these techniques correlated with the human data.
ContributorsJones, Hanna Vanessa (Author) / Liss, Julie (Thesis director) / Dorman, Michael (Committee member) / Borrie, Stephanie (Committee member) / Barrett, The Honors College (Contributor) / Department of Speech and Hearing Science (Contributor) / Department of English (Contributor) / Speech and Hearing Science (Contributor)
Created2013-05
134576-Thumbnail Image.png
Description
Research on /r/ production previously used formant analysis as the primary acoustic analysis, with particular focus on the low third formant in the speech signal. Prior imaging of speech used X-Ray, MRI, and electromagnetic midsagittal articulometer systems. More recently, the signal processing technique of Mel-log spectral plots has been used

Research on /r/ production previously used formant analysis as the primary acoustic analysis, with particular focus on the low third formant in the speech signal. Prior imaging of speech used X-Ray, MRI, and electromagnetic midsagittal articulometer systems. More recently, the signal processing technique of Mel-log spectral plots has been used to study /r/ production in children and female adults. Ultrasound imaging of the tongue also has been used to image the tongue during speech production in both clinical and research settings. The current study attempts to describe /r/ production in three different allophonic contexts; vocalic, prevocalic, and postvocalic positions. Ultrasound analysis, formant analysis, Mel-log spectral plots, and /r/ duration were measured for /r/ production in 29 adult speakers (10 male, 19 female). A possible relationship between these variables was also explored. Results showed that the amount of superior constriction in the postvocalic /r/ allophone was significantly lower than the other /r/ allophones. Formant two was significantly lower and the distance between formant two and three was significantly higher for the prevocalic /r/ allophone. Vocalic /r/ had the longest average duration, while prevocalic /r/ had the shortest duration. Signal processing results revealed candidate Mel-bin values for accurate /r/ production for each allophone of /r/. The results indicate that allophones of /r/ can be distinguished based the different analyses. However, relationships between these analyses are still unclear. Future research is needed in order to gather more data on /r/ acoustics and articulation in order to find possible relationships between the analyses for /r/ production.
ContributorsHirsch, Megan Elizabeth (Author) / Weinhold, Juliet (Thesis director) / Gardner, Joshua (Committee member) / Department of Speech and Hearing Science (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133445-Thumbnail Image.png
Description
The objective of this study was to analyze the auditory feedback system and the pitch-shift reflex in relation to vibrato. 11 subjects (female n = 8, male n = 3) without speech, hearing, or neurological disorders were used. Compensation magnitude, adaptation magnitude, relative response phase, and passive and active perception

The objective of this study was to analyze the auditory feedback system and the pitch-shift reflex in relation to vibrato. 11 subjects (female n = 8, male n = 3) without speech, hearing, or neurological disorders were used. Compensation magnitude, adaptation magnitude, relative response phase, and passive and active perception were recorded when the subjects were subjected to auditory feedback perturbed by phasic amplitude and F0 modulation, or “vibrato”. “Tremolo,” or phasic amplitude modulation, was used as a control. Significant correlation was found between the ability to perceive vibrato and tremolo in active trials and the ability to perceive in passive trials (p=0.01). Passive perceptions were lower (more sensitive) than active perceptions (p< 0.01). Adaptation vibrato trials showed significant modulation magnitude (p=0.031), while tremolo did not. The two conditions were significantly different (p<0.01). There was significant phase change for both tremolo and vibrato, but vibrato phase change was greater, nearly 180° (p<0.01). In the compensation trials, the modulation change from control to vibrato trials was significantly greater than the change from control to tremolo (p=0.01). Vibrato and tremolo also had significantly different average phase change (p<0.01). It can be concluded that the auditory feedback system tries to cancel out dynamic pitch perturbations by cancelling them out out-of-phase. Similar systems must be used to adapt and to compensate to vibrato. Despite the auditory feedback system’s online monitoring, the passive perception was still better than active perception, possibly because it required only one task (perceiving) rather than two (perceiving and producing). The pitch-shift reflex compensates to the sensitivity of the auditory feedback system, as shown by the increased perception of vibrato over tremolo.
ContributorsHiggins, Alexis Brittany (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / Luo, Xin (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135494-Thumbnail Image.png
Description
Hearing and vision are two senses that most individuals use on a daily basis. The simultaneous presentation of competing visual and auditory stimuli often affects our sensory perception. It is often believed that vision is the more dominant sense over audition in spatial localization tasks. Recent work suggests that visual

Hearing and vision are two senses that most individuals use on a daily basis. The simultaneous presentation of competing visual and auditory stimuli often affects our sensory perception. It is often believed that vision is the more dominant sense over audition in spatial localization tasks. Recent work suggests that visual information can influence auditory localization when the sound is emanating from a physical location or from a phantom location generated through stereophony (the so-called "summing localization"). The present study investigates the role of cross-modal fusion in an auditory localization task. The focuses of the experiments are two-fold: (1) reveal the extent of fusion between auditory and visual stimuli and (2) investigate how fusion is correlated with the amount of visual bias a subject experiences. We found that fusion often occurs when light flash and "summing localization" stimuli were presented from the same hemifield. However, little correlation was observed between the magnitude of visual bias and the extent of perceived fusion between light and sound stimuli. In some cases, subjects reported distinctive locations for light and sound and still experienced visual capture.
ContributorsBalderas, Leslie Ann (Author) / Zhou, Yi (Thesis director) / Yost, William (Committee member) / Department of Speech and Hearing Science (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
132359-Thumbnail Image.png
Description
Cochlear implant (CI) successfully restores hearing sensation to profoundly deaf patients, but its
performance is limited by poor spectral resolution. Acoustic CI simulation has been widely used
in normal-­hearing (NH) listeners to study the effect of spectral resolution on speech perception,
while avoiding patient-­related confounds. It is unclear how speech production may change

Cochlear implant (CI) successfully restores hearing sensation to profoundly deaf patients, but its
performance is limited by poor spectral resolution. Acoustic CI simulation has been widely used
in normal-­hearing (NH) listeners to study the effect of spectral resolution on speech perception,
while avoiding patient-­related confounds. It is unclear how speech production may change with
the degree of spectral degradation of auditory feedback as experience by CI users. In this study,
a real-­time sinewave CI simulation was developed to provide NH subjects with auditory
feedback of different spectral resolution (1, 2, 4, and 8 channels). NH subjects were asked to
produce and identify vowels, as well as recognize sentences while listening to the real-­time CI
simulation. The results showed that sentence recognition scores with the real-­time CI simulation
improved with more channels, similar to those with the traditional off-­line CI simulation.
Perception of a vowel continuum “HEAD”-­ “HAD” was near chance with 1, 2, and 4 channels,
and greatly improved with 8 channels and full spectrum. The spectral resolution of auditory
feedback did not significantly affect any acoustic feature of vowel production (e.g., vowel space
area, mean amplitude, mean and variability of fundamental and formant frequencies). There
was no correlation between vowel production and perception. The lack of effect of auditory
feedback spectral resolution on vowel production was likely due to the limited exposure of NH
subjects to CI simulation and the limited frequency ranges covered by the sinewave carriers of
CI simulation. Future studies should investigate the effects of various CI processing parameters
on speech production using a noise-­band CI simulation.
ContributorsPerez Lustre, Sarahi (Author) / Luo, Xin (Thesis director) / Daliri, Ayoub (Committee member) / Division of Teacher Preparation (Contributor) / College of Health Solutions (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05