Matching Items (5)
Filtering by

Clear all filters

157392-Thumbnail Image.png
Description
With a growing number of adults with autism spectrum disorder (ASD), more and more research has been conducted on majority male cohorts with ASD from young, adolescence, and some older age. Currently, males make up the majority of individuals diagnosed with ASD, however, recent research states that the gender ga

With a growing number of adults with autism spectrum disorder (ASD), more and more research has been conducted on majority male cohorts with ASD from young, adolescence, and some older age. Currently, males make up the majority of individuals diagnosed with ASD, however, recent research states that the gender gap is closing due to more advanced screening and a better understanding of how females with ASD present their symptoms. Little research has been published on the neurocognitive differences that exist between older adults with ASD compared to neurotypical (NT) counterparts, and nothing has specifically addressed older women with ASD. This study utilized neuroimaging and neuropsychological tests to examine differences between diagnosis and sex of four distinct groups: older men with ASD, older women with ASD, older NT men, and older NT women. In each group, hippocampal size (via FreeSurfer) was analyzed for differences as well as correlations with neuropsychological tests. Participants (ASD Female, n = 12; NT Female, n = 14; ASD Male, n = 30; NT Male = 22), were similar according to age, IQ, and education. The results of the study indicated that the ASD Group as a whole performed worse on executive functioning tasks (Wisconsin Card Sorting Test, Trails Making Test) and memory-related tasks (Rey Auditory Verbal Learning Test, Weschler Memory Scale: Visual Reproduction) compared to the NT Group. Interactions of sex by diagnosis approached significance only within the WCST non-perseverative errors, with the women with ASD performing worse than NT women, but no group differences between men. Effect sizes between the female groups (ASD female vs. NT female) showed more than double that of the male groups (ASD male vs. NT male) for all WCST and AVLT measures. Participants with ASD had significantly smaller right hippocampal volumes than NT participants. In addition, all older women showed larger hippocampal volumes when corrected for total intracranial volume (TIV) compared to all older men. Overall, NT Females had significant correlations across all neuropsychological tests and their hippocampal volumes whereas no other group had significant correlations. These results suggest a tighter coupling between hippocampal size and cognition in NT Females than NT Males and both sexes with ASD. This study promotes further understanding of the neuropsychological differences between older men and women, both with and without ASD. Further research is needed on a larger sample of older women with and without ASD.
ContributorsWebb, Christen Len (Author) / Braden, B. Blair (Thesis advisor) / Azuma, Tamiko (Committee member) / Dixon, Maria (Committee member) / Arizona State University (Publisher)
Created2019
136164-Thumbnail Image.png
Description
The increase of Traumatic Brain Injury (TBI) cases in recent war history has increased the urgency of research regarding how veterans are affected by TBIs. The purpose of this study was to evaluate the effects of TBI on speech recognition in noise. The AzBio Sentence Test was completed for signal-to-noise

The increase of Traumatic Brain Injury (TBI) cases in recent war history has increased the urgency of research regarding how veterans are affected by TBIs. The purpose of this study was to evaluate the effects of TBI on speech recognition in noise. The AzBio Sentence Test was completed for signal-to-noise ratios (S/N) from -10 dB to +15 dB for a control group of ten participants and one US military veteran with history of service-connected TBI. All participants had normal hearing sensitivity defined as thresholds of 20 dB or better at frequencies from 250-8000 Hz in addition to having tympanograms within normal limits. Comparison of the data collected on the control group versus the veteran suggested that the veteran performed worse than the majority of the control group on the AzBio Sentence Test. Further research with more participants would be beneficial to our understanding of how veterans with TBI perform on speech recognition tests in the presence of background noise.
ContributorsCorvasce, Erica Marie (Author) / Peterson, Kathleen (Thesis director) / Williams, Erica (Committee member) / Azuma, Tamiko (Committee member) / Barrett, The Honors College (Contributor) / Department of Speech and Hearing Science (Contributor)
Created2015-05
133509-Thumbnail Image.png
Description
Adults with autism spectrum disorder (ASD) commonly have co-morbid psychiatric symptoms which can decrease quality of life. Although many adults with ASD are achieving greater independence, including attending college, psychiatric symptoms are generally not well controlled in this group. Mindfulness Based Stress Reduction (MBSR) is a program that has successfully

Adults with autism spectrum disorder (ASD) commonly have co-morbid psychiatric symptoms which can decrease quality of life. Although many adults with ASD are achieving greater independence, including attending college, psychiatric symptoms are generally not well controlled in this group. Mindfulness Based Stress Reduction (MBSR) is a program that has successfully been used to reduce the stress, depression, and anxiety symptoms in many clinical and non-clinical groups and may also be effective for college-aged students with ASD. The present investigation assessed the demand, practicality, implementation, adaptation, and acceptability of an MBSR course for college students with ASD. A total of 22 participants completed the questionnaire containing 53 questions and were between the ages of 18 to 64. We found that the MBSR therapy is in high demand for individuals with ASD, and that the participants would be willingly complete the intervention techniques. Participants generally stated that a therapy course like MBSR may help reduce their symptoms, and that they were eager to enroll. Participants were willing to attend all 8 classes during the summer, with a preference for afternoons. Also, modifications including yoga and background music would be accepted by each participant as well as any additional modifications made to the course to meet the needs of the individuals with ASD. Next steps include enrolling and randomizing students into the MBSR course or control group, as well as collect pre- and post-intervention data. We hypothesize MBSR will reduce the psychiatric symptoms and stress levels of individuals in college with ASD, demonstrating its effectiveness in this vulnerable population.
ContributorsJones, Rachel Michelle (Author) / Braden, Blair (Thesis director) / Baxter, Leslie (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / Department of Speech and Hearing Science (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134966-Thumbnail Image.png
Description
Background: Gait disturbance, clumsiness, and other mild movement problems are often observed in children with autism spectrum disorder (ASD) (Maurer and Damasio 1982). As the brain ages, these symptoms may persist or worsen in late adulthood in those diagnosed with ASD. This study focused on older adults with ASD to

Background: Gait disturbance, clumsiness, and other mild movement problems are often observed in children with autism spectrum disorder (ASD) (Maurer and Damasio 1982). As the brain ages, these symptoms may persist or worsen in late adulthood in those diagnosed with ASD. This study focused on older adults with ASD to study motor behavior and underlying brain integrity. Using a finger tapping task, motor performance was measured in a cross-sectional study comparing older adults with ASD and age-matched typically developing (TD) controls. We hypothesized that older adults with ASD would show poorer motor performance (slower finger tapping speed). We also hypothesized that underlying brain differences, measured using MRI, in regions associated with motor function including the primary motor cortex, basal ganglia, and cerebellum, as well as the white matter connecting tracts would exist between groups and be associated with the proposed disparity in motor performance.

Method: A finger oscillation (Finger Tapping) test was administered to both ASD (n=21) and TD (n=20) participants aged 40-70 year old participants as a test of fine motor speed. Magnetic resonance (MR) images were collected using a Philips 3 Tesla scanner. 3D T1-weighted and diffusion tensor images (DTI) were obtained to measure gray and white matter volume and white matter integrity, respectively. FreeSurfer, an automated volumetric measurement software, was used to determine group volumetric differences. Mean, radial, and axial diffusivity, fractional anisotropy, and local diffusion homogeneity were measured from DTI images using PANDA software in order to evaluate white matter integrity.

Results: All participants were right-handed and there were no significant differences in demographic variables (ASD/TD, means) including age (51.9/49.1 years), IQ (107/112) and years education (15/16). Total brain volume was not significantly different between groups. No statistically significant group differences were observed in finger tapping speed. ASD participants compared to TDs showed a trend of slower finger tapping (taps/10 seconds) speed on the dominant hand (47.00 (±11.2) vs. (50.5 (±6.6)) and nondominant hand (44.6 (±7.6) vs. (47.2 (±6.6)). However, a large degree of variability was observed in the ASD group, and the Levene’s test for homogeneity of variance approached significance (p=0.053) on the dominant, but not the nondominant, hand. No significant group differences in gray matter regional volume were found for brain regions associated with performing motor tasks. In contrast, group differences were found on several measures of white matter including the corticospinal tract, anterior internal capsule and middle cerebellar peduncle. Brain-behavior correlations showed that dominant finger tapping speed correlated with left hemisphere white matter integrity of the corticospinal tract and right hemisphere cerebellar white matter in the ASD group.

Conclusions: No significant differences were observed between groups in finger tapping speed but the high degree of variability seen in the ASD group. Differences in motor performance appear to be associated with observed brain differences, particularly in the integrity of white matter tracts contributing to motor functioning.
ContributorsDeatherage, Brandon R. (Co-author) / Braden, B. Blair (Co-author, Committee member) / Smith, Christopher J. (Co-author) / McBeath, Michael (Co-author, Thesis director) / Thompson, Aimee M. (Co-author) / Wood, Emily G. (Co-author) / McGee, Samuel C. (Co-author) / Sinha, Krishna (Co-author) / Baxter, Leslie (Co-author, Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor) / Department of Information Systems (Contributor)
Created2017-05
171839-Thumbnail Image.png
Description
Autism shows a pronounced and replicable sex bias with approximately three-to-four males diagnosed for every one female. Sex-related biology is thought to play a role in the sex bias, such that female biology may be protective and/or male biology may increase vulnerability to autism in the context of similar genetic

Autism shows a pronounced and replicable sex bias with approximately three-to-four males diagnosed for every one female. Sex-related biology is thought to play a role in the sex bias, such that female biology may be protective and/or male biology may increase vulnerability to autism in the context of similar genetic risk. Beyond etiology, sex-related biology has also been implicated in lifespan risk for health and psychiatric conditions that show common co-morbidity in autism. Thus, understanding how sex-related biology impacts autism etiology and progression has important implications for prognosis and treatment. Neuroimaging offers a powerful tool for in-vivo characterization of brain-based sex differences in autism, especially given emerging efforts to develop large, well-characterized longitudinal samples. To date, however, neuroimaging studies have shown mixed and inconsistent findings, which remain challenging to integrate in the broader literature context. In a recent systematic review of neuroimaging studies of typical sex differences, few to no replicable effects were found beyond brain size, suggesting the brain is not “sexually dimorphic.” Instead, it is argued that the brain is a “mosaic” of features from various sources, including masculine and feminine biological processes as well as individual genetics and environment. Thus, designing neuroimaging studies that are sensitive to brain-based sex differences in autism likely requires careful study design and analytical method selection. Through a series of studies, the overarching dissertation aim was to identify optimal methods for characterizing neuroimaging-based sex differences in autism and to test these methods in preliminary samples. Study 1 comprised a systematic review of studies examining neuroimaging-based sex differences in autism with the aim of identifying optimal study designs, neuroimaging modalities, and analytical methods. Study 2 focused on examining the sensitivity of a connectome-wide approach to identify functional connectivity hubs underlying sex-biased behavior associated with autism (e.g., camouflaging). Study 3 used a connectome-wide functional connectivity approach to characterize sex differences in longitudinal changes associated with autistic traits vs. categorical diagnosis. These studies suggest that optimizing study design and methods improves identification of biologically plausible and clinically meaningful brain sex differences in autism. The relevance of findings to etiology and prognosis are discussed.
ContributorsWalsh, Melissa (Author) / Braden, B. Blair (Thesis advisor) / Azuma, Tamiko (Committee member) / Rogalsky, Corianne (Committee member) / Arizona State University (Publisher)
Created2022