Matching Items (7)
Filtering by

Clear all filters

135856-Thumbnail Image.png
Description
The flipped classroom is a teaching method that flips the activities done in and out of class, i.e., concepts are learned out of class and problems are worked in class under the supervision of the instructor. Studies have indicated several benefits of the FC, including improved performance and engagement. In

The flipped classroom is a teaching method that flips the activities done in and out of class, i.e., concepts are learned out of class and problems are worked in class under the supervision of the instructor. Studies have indicated several benefits of the FC, including improved performance and engagement. In the past years, further studies have investigated the benefits of FC in statics, dynamics, and mechanics of materials courses and indicate similar performance benefits. However, these studies address a need for additional studies to validate their results due to the short length of their research or small classroom size. In addition, many of these studies do not measure student attitudes, such as self-efficacy, or the difference in time spent out of class on coursework. The objective of this research is to determine the effectiveness of the flipped classroom system (FC) in comparison to the traditional classroom system (TC) in a large mechanics of materials course. Specifically, it aims to measure student performance, student self-efficacy, student attitudes on lecture quality, motivation, attendance, hours spent out of class, practice, and support, and difference in impact between high, middle, and low achieving students. In order to accomplish this, three undergraduate mechanics of materials courses were analyzed during the spring 2015 semester. One FC section served as the experimental group (92 students), while the two TC sections served as the control group (125 students). To analyze student self-efficacy and attitudes, a survey instrument was designed to measure 18 variables and was administered at the end of the semester. Standardized core outcomes were compared between groups to analyze performance. This paper presents the specific course framework used in this FC, detailed results of the quantitative and qualitative analysis, and discussion of strengths and weaknesses. Overall, an overwhelming majority of students were satisfied with FC and would like more of their classes taught using FC. Strengths of this teaching method include greater confidence, better focus, higher satisfaction with practice in class and assistance received from instructors and peers, more freedom to express ideas and questions in class, and less time required outside of class for coursework. Results also suggest that this method has a greater positive impact on high and low achieving students and leads to higher performance. The criticisms made by students focused on lecture videos to have more worked examples. Overall, results suggest that FC is more effective than TC in a large mechanics of materials course.
ContributorsLee, Andrew Ryan (Author) / Zhu, Haolin (Thesis director) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136180-Thumbnail Image.png
Description
Iodide-based ionic liquids have been widely employed as sources of iodide in electrolytes for applications utilizing the triiodide/iodide redox couple. While adding a low-viscosity solvent such as water to ionic liquids can greatly enhance their usefulness, mixtures of highly viscous iodide-containing ILs with water have never been studied. Thus, this

Iodide-based ionic liquids have been widely employed as sources of iodide in electrolytes for applications utilizing the triiodide/iodide redox couple. While adding a low-viscosity solvent such as water to ionic liquids can greatly enhance their usefulness, mixtures of highly viscous iodide-containing ILs with water have never been studied. Thus, this paper investigates, for the first time, mixtures of water and the ionic liquid 1-butyl-3-methylimidazolium iodide ([BMIM][I]) through a combined experimental and molecular dynamics study. The density, melting point, viscosity and conductivity of these mixtures were measured experimentally. The composition region below 50% water by mole was found to be dramatically different from the region above 50% water, with trends in density and melting point differing before and after that point. Water was found to have a profound effect on viscosity and conductivity of the IL, and the effect of hydrogen bonding was discussed. Molecular dynamics simulations representing the same mixture compositions were performed. Molecular ordering was observed, as were changes in this ordering corresponding to water content. Molecular ordering was related to the experimentally measured mixture properties, providing a possible explanation for the two distinct composition regions identified by experiment.
ContributorsNgan, Miranda L (Author) / Dai, Lenore (Thesis director) / Nofen, Elizabeth (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
135805-Thumbnail Image.png
Description
The problem of catastrophic damage purveys in any material application, and minimizing its occurrence is paramount for general health and safety. We have successfully synthesized, characterized, and applied dimeric 9-anthracene carboxylic acid (Di-AC)-based mechanophores particles to form stress sensing epoxy matrix composites. As Di-AC had never been previously applied as

The problem of catastrophic damage purveys in any material application, and minimizing its occurrence is paramount for general health and safety. We have successfully synthesized, characterized, and applied dimeric 9-anthracene carboxylic acid (Di-AC)-based mechanophores particles to form stress sensing epoxy matrix composites. As Di-AC had never been previously applied as a mechanophore and thermosets are rarely studied in mechanochemistry, this created an alternative avenue for study in the field. Under an applied stress, the cyclooctane-rings in the Di-AC particles reverted back to their fluorescent anthracene form, which linearly enhanced the overall fluorescence of the composite in response to the applied strain. The fluorescent signal further allowed for stress sensing in the elastic region of the stress\u2014strain curve, which is considered to be a form of damage precursor detection. Overall, the incorporation of Di-AC to the epoxy matrix added much desired stress sensing and damage precursor detection capabilities with good retention of the material properties.
ContributorsWickham, Jason Alexander (Co-author) / Nofen, Elizabeth (Co-author, Committee member) / Koo, Bonsung (Co-author) / Chattopadhyay, Aditi (Co-author) / Dai, Lenore (Co-author, Thesis director) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135298-Thumbnail Image.png
Description
This project sought to analyze the effects of recycling Inconel 718 powder for Direct Metal Laser Sintering (DMSL) for additive manufacturing by testing low cycle fatigue tensile samples ranging from virgin to ten times recycled. Fracture generally occurs at the sample surface where persistent slip planes form and accumulate to

This project sought to analyze the effects of recycling Inconel 718 powder for Direct Metal Laser Sintering (DMSL) for additive manufacturing by testing low cycle fatigue tensile samples ranging from virgin to ten times recycled. Fracture generally occurs at the sample surface where persistent slip planes form and accumulate to cause a sudden fracture leading to signature markings for various phases of crack growth. Effects caused by contamination would be found in the first region of crack growth at the initiation site as the cause stress concentration. Tensile strength and fatigue life were compared to initiation site size found from fracture images obtained using scanning electron microscope imaging which found no significant deviations from the expected surface cracking and LCF region of slip plane buildups. Contamination was not found at any initiation site indicating that fracture life was not impacted by the amount of powder recycling. LCF life ranged from 60,000 to 250,000 which the majority experiencing fractures near 120,000 cyclic loadings. If defect effects were to be found than the low fatigue life sample would exhibit them however its fracture surface did not exhibit contamination but a slight increase in porosity found in the phase III cracking region. The In 718 powders were also analyzed to determine that the primary powder contaminates were brush fibers used to sweep away unused powders during processing however these were not seen in the final DMLS samples.
ContributorsLaws, Alec Ky (Author) / Tasooji, Amaneh (Thesis director) / Eylon, Daniel (Committee member) / Materials Science and Engineering Program (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148412-Thumbnail Image.png
Description

This work summarizes the development of a dynamic measurement platform in a cryostat to measure sample temperature response to space-like conditions and the creation a MATLAB theoretical model to predict sample temperature responses in the platform itself. An interesting variable-emittance sample called a Fabry-Perot emitter was studied for its thermal

This work summarizes the development of a dynamic measurement platform in a cryostat to measure sample temperature response to space-like conditions and the creation a MATLAB theoretical model to predict sample temperature responses in the platform itself. An interesting variable-emittance sample called a Fabry-Perot emitter was studied for its thermal homeostasis behavior using the two developments. Using the measurement platform, it was shown that there was no thermal homeostatic behavior demonstrated by the sample at steady state temperatures. Theoretical calculations show other ways to demonstrate the cooling homeostasis behavior through time-varying heat inputs. Factors within the system such as heat loss and thermal mass contributed to an inhibited sample performance in the platform. Future work will have to be conducted, not only to verify the findings of the initial experiments but also to improve the measurement platform and the theoretical model.

ContributorsBoman, Neal D (Author) / Wang, Liping (Thesis director) / Taylor, Syndey (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132086-Thumbnail Image.png
Description
This thesis project explains what thermal interface materials (TIMs) are, what they are used for, and how to measure their properties. Thermal interface materials are typically either a grease like paste or a soft polymer pad that is placed between two solids to increase the heat transfer rate. Solids in

This thesis project explains what thermal interface materials (TIMs) are, what they are used for, and how to measure their properties. Thermal interface materials are typically either a grease like paste or a soft polymer pad that is placed between two solids to increase the heat transfer rate. Solids in contact with each other experience a very large thermal contact resistance, this creates a thermal bottleneck which severely decreases the heat transfer from one solid to another. To solve this, particles with a high thermal conductivity are used as filler material in either a grease or polymer. A common application for TIMs is in computer components, where a TIM is used to remove the heat generated from computer chips. These materials allow for computer chips to run faster without overheating or throttling performance. However, further improvements to TIMs are still desired, which are needed for more powerful computer chips. In this work, a Stepped Bar Apparatus (SBA) is used to evaluate the thermal properties of TIMs. The SBA is based on Fourier’s Law of one-dimensional heat transfer. This work explains the fundamentals of the SBA measurement, and develops a reliable way to confirm the SBA’s measurement consistency through the use of reference samples. Furthermore, this work evaluates the effects of volume fraction and magnetic alignment on the performance of nickel flakes mixed into a polymer to create a soft TIM composite pad. Magnets are used to align the nickel flakes into a column like arrangement in the direction that heat will travel. Magnetic alignment increases the thermal conductivity of the composite pads, and has peak performance at low compression.
ContributorsHart, Matthew (Author) / Rykaczewski, Konrad (Thesis director) / Wang, Robert (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
164946-Thumbnail Image.png
Description
This paper begins with an introduction to the topics relevant to the research presented. Properties of diamond, diamond’s ability to be used in power electronics compared to other semiconducting materials, and a brief overview of field effect transistors are among the topics discussed. The remainder of the paper centers around

This paper begins with an introduction to the topics relevant to the research presented. Properties of diamond, diamond’s ability to be used in power electronics compared to other semiconducting materials, and a brief overview of field effect transistors are among the topics discussed. The remainder of the paper centers around research that has been conducted on seven diamond samples. Interface characterization was performed on two diamond samples, one with a high boron incorporation epitaxial layer and another with a low boron incorporation epitaxial layer. UPS He I analysis and UPS He II analysis were used to construct band alignments for the two samples, which revealed no significant differences between their measured properties. A Python program designed to optimize XPS loss peak and UPS He II graphical data analysis is also discussed in detail. Next, Hall effect measurements are examined. Hall effect measurements were carried out on seven diamond samples, two of which have high boron incorporation epitaxial layers, two of which have low boron incorporation epitaxial layers, one of which has a moderate boron incorporation epitaxial layer, and two of which have a phosphorus-doped epitaxial layer. Hall measurements of the boron-doped samples revealed no significant differences in measured parameters amongst the samples with varying boron incorporation epitaxial layers, with the exception of an expected difference in measured carrier concentration proportional to the amount of dopant incorporation in the layers. Some samples with boron-doped epitaxial layers produced measurements indicating n-type charge carriers, which is unexpected given the p-type charge carriers within these samples. The phosphorus-doped samples were unable to be measured due to overly high resistance following an oxygen termination step, and this effect was functionally reversed following hydrogen termination of the samples. It is hypothesized that Fermi pinning is responsible for this effect. The paper concludes with a summary of data discussed in previous sections and a suggested direction for future research on this topic.
ContributorsJacobs, Madeleine (Author) / Nemanich, Robert (Thesis director) / Botana, Antia (Committee member) / Barrett, The Honors College (Contributor) / College of Integrative Sciences and Arts (Contributor)
Created2022-05