Matching Items (4)
Filtering by

Clear all filters

135442-Thumbnail Image.png
Description
Within recent years, metal-organic frameworks, or MOF’s, have gained a lot of attention in the materials research community. These micro-porous materials are constructed of a metal oxide core and organic linkers, and have a wide-variety of applications due to their extensive material characteristic possibilities. The focus of this study is

Within recent years, metal-organic frameworks, or MOF’s, have gained a lot of attention in the materials research community. These micro-porous materials are constructed of a metal oxide core and organic linkers, and have a wide-variety of applications due to their extensive material characteristic possibilities. The focus of this study is the MOF-5 material, specifically its chemical stability in air. The MOF-5 material has a large pore size of 8 Å, and aperture sizes of 15 and 12 Å. The pore size, pore functionality, and physically stable structure makes MOF-5 a desirable material. MOF-5 holds applications in gas/liquid separation, catalysis, and gas storage. The main problem with the MOF-5 material, however, is its instability in atmospheric air. This inherent instability is due to the water in air binding to the zinc-oxide core, effectively changing the material and its structure. Because of this material weakness, the MOF-5 material is difficult to be utilized in industrial applications. Through the research efforts proposed by this study, the stability of the MOF-5 powder and membrane were studied. MOF-5 powder and a MOF-5 membrane were synthesized and characterized using XRD analysis. In an attempt to improve the stability of MOF-5 in air, methyl groups were added to the organic linker in order to hinder the interaction of water with the Zn4O core. This was done by replacing the terepthalic acid organic linker with 2,5-dimethyl terephthalic acid in the powder and membrane synthesis steps. The methyl-modified MOF-5 powder was found to be stable after several days of exposure to air while the MOF-5 powder exhibited significant crystalline change. The methyl-modified membrane was found to be unstable when synthesized using the same procedure as the MOF-5 membrane.
ContributorsAnderson, Anthony David (Author) / Lin, Jerry Y.S. (Thesis director) / Ibrahim, Amr (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136180-Thumbnail Image.png
Description
Iodide-based ionic liquids have been widely employed as sources of iodide in electrolytes for applications utilizing the triiodide/iodide redox couple. While adding a low-viscosity solvent such as water to ionic liquids can greatly enhance their usefulness, mixtures of highly viscous iodide-containing ILs with water have never been studied. Thus, this

Iodide-based ionic liquids have been widely employed as sources of iodide in electrolytes for applications utilizing the triiodide/iodide redox couple. While adding a low-viscosity solvent such as water to ionic liquids can greatly enhance their usefulness, mixtures of highly viscous iodide-containing ILs with water have never been studied. Thus, this paper investigates, for the first time, mixtures of water and the ionic liquid 1-butyl-3-methylimidazolium iodide ([BMIM][I]) through a combined experimental and molecular dynamics study. The density, melting point, viscosity and conductivity of these mixtures were measured experimentally. The composition region below 50% water by mole was found to be dramatically different from the region above 50% water, with trends in density and melting point differing before and after that point. Water was found to have a profound effect on viscosity and conductivity of the IL, and the effect of hydrogen bonding was discussed. Molecular dynamics simulations representing the same mixture compositions were performed. Molecular ordering was observed, as were changes in this ordering corresponding to water content. Molecular ordering was related to the experimentally measured mixture properties, providing a possible explanation for the two distinct composition regions identified by experiment.
ContributorsNgan, Miranda L (Author) / Dai, Lenore (Thesis director) / Nofen, Elizabeth (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
135805-Thumbnail Image.png
Description
The problem of catastrophic damage purveys in any material application, and minimizing its occurrence is paramount for general health and safety. We have successfully synthesized, characterized, and applied dimeric 9-anthracene carboxylic acid (Di-AC)-based mechanophores particles to form stress sensing epoxy matrix composites. As Di-AC had never been previously applied as

The problem of catastrophic damage purveys in any material application, and minimizing its occurrence is paramount for general health and safety. We have successfully synthesized, characterized, and applied dimeric 9-anthracene carboxylic acid (Di-AC)-based mechanophores particles to form stress sensing epoxy matrix composites. As Di-AC had never been previously applied as a mechanophore and thermosets are rarely studied in mechanochemistry, this created an alternative avenue for study in the field. Under an applied stress, the cyclooctane-rings in the Di-AC particles reverted back to their fluorescent anthracene form, which linearly enhanced the overall fluorescence of the composite in response to the applied strain. The fluorescent signal further allowed for stress sensing in the elastic region of the stress\u2014strain curve, which is considered to be a form of damage precursor detection. Overall, the incorporation of Di-AC to the epoxy matrix added much desired stress sensing and damage precursor detection capabilities with good retention of the material properties.
ContributorsWickham, Jason Alexander (Co-author) / Nofen, Elizabeth (Co-author, Committee member) / Koo, Bonsung (Co-author) / Chattopadhyay, Aditi (Co-author) / Dai, Lenore (Co-author, Thesis director) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
164946-Thumbnail Image.png
Description
This paper begins with an introduction to the topics relevant to the research presented. Properties of diamond, diamond’s ability to be used in power electronics compared to other semiconducting materials, and a brief overview of field effect transistors are among the topics discussed. The remainder of the paper centers around

This paper begins with an introduction to the topics relevant to the research presented. Properties of diamond, diamond’s ability to be used in power electronics compared to other semiconducting materials, and a brief overview of field effect transistors are among the topics discussed. The remainder of the paper centers around research that has been conducted on seven diamond samples. Interface characterization was performed on two diamond samples, one with a high boron incorporation epitaxial layer and another with a low boron incorporation epitaxial layer. UPS He I analysis and UPS He II analysis were used to construct band alignments for the two samples, which revealed no significant differences between their measured properties. A Python program designed to optimize XPS loss peak and UPS He II graphical data analysis is also discussed in detail. Next, Hall effect measurements are examined. Hall effect measurements were carried out on seven diamond samples, two of which have high boron incorporation epitaxial layers, two of which have low boron incorporation epitaxial layers, one of which has a moderate boron incorporation epitaxial layer, and two of which have a phosphorus-doped epitaxial layer. Hall measurements of the boron-doped samples revealed no significant differences in measured parameters amongst the samples with varying boron incorporation epitaxial layers, with the exception of an expected difference in measured carrier concentration proportional to the amount of dopant incorporation in the layers. Some samples with boron-doped epitaxial layers produced measurements indicating n-type charge carriers, which is unexpected given the p-type charge carriers within these samples. The phosphorus-doped samples were unable to be measured due to overly high resistance following an oxygen termination step, and this effect was functionally reversed following hydrogen termination of the samples. It is hypothesized that Fermi pinning is responsible for this effect. The paper concludes with a summary of data discussed in previous sections and a suggested direction for future research on this topic.
ContributorsJacobs, Madeleine (Author) / Nemanich, Robert (Thesis director) / Botana, Antia (Committee member) / Barrett, The Honors College (Contributor) / College of Integrative Sciences and Arts (Contributor)
Created2022-05